首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The kinetics of the reactions of 1-and 2-butoxy radicals have been studied using a slow-flow photochemical reactor with GC-FID detection of reactants and products. Branching ratios between decomposition, CH3CH(O*)CH2CH3 --> CH3CHO + C2H5, reaction (7), and reaction with oxygen, CH3CH(O*)CH2CH3+ O2 --> CH3C(O)C2H5+ HO2, reaction (6), for the 2-butoxy radical and between isomerization, CH3CH2CH2CH2O* --> CH2CH2CH2CH2OH, reaction (9), and reaction with oxygen, CH3CH2CH2CH2O* + O2 --> C3H7CHO + HO2, reaction (8), for the 1-butoxy radical were measured as a function of oxygen concentration at atmospheric pressure over the temperature range 250-318 K. Evidence for the formation of a small fraction of chemically activated alkoxy radicals generated from the photolysis of alkyl nitrite precursors and from the exothermic reaction of 2-butyl peroxy radicals with NO was observed. The temperature dependence of the rate constant ratios for a thermalized system is given by k7/k6= 5.4 x 10(26) exp[(-47.4 +/- 2.8 kJ mol(-1))/RT] molecule cm(-3) and k9/k8= 1.98 x 10(23) exp[(-22.6 +/- 3.9 kJ mol(-1))/RT] molecule cm(-3). The results agree well with the available experimental literature data at ambient temperature but the temperature dependence of the rate constant ratios is weaker than in current recommendations.  相似文献   

2.
The kinetics of the O + HCNO reaction were investigated by a relative rate technique using infrared diode laser absorption spectroscopy. Laser photolysis (355 nm) of NO2 was used to produce O atoms, followed by O atom reactions with CS2, NO2, and HCNO, and infrared detection of OCS product from the O + CS2 reaction. Analysis of the experiment data yields a rate constant of k1= (9.84 +/- 3.52) x 10-12 exp[(-195 +/- 120)/T)] (cm3 molecule-1 s-1) over the temperature range 298-375 K, with a value of k1 = (5.32 +/- 0.40) x 10-12 cm3 molecule-1 s-1 at 298 K. Infrared detection of product species indicates that CO producing channels, probably CO + NO + H, dominate the reaction.  相似文献   

3.
The kinetics and mechanism of the reactions of Cl atoms and OH radicals with CH3CH2CHO were investigated at room temperature using two complementary techniques: flash photolysis/UV absorption and continuous photolysis/FTIR smog chamber. Reaction with Cl atoms proceeds predominantly by abstraction of the aldehydic hydrogen atom to form acyl radicals. FTIR measurements indicated that the acyl forming channel accounts for (88 +/- 5)%, while UV measurements indicated that the acyl forming channel accounts for (88 +/- 3)%. Relative rate methods were used to measure: k(Cl + CH3CH2CHO) = (1.20 +/- 0.23) x 10(-10); k(OH + CH3CH2CHO) = (1.82 +/- 0.23) x 10(-11); and k(Cl + CH3CH2C(O)Cl) = (1.64 +/- 0.22) x 10(-12) cm3 molecule(-1) s(-1). The UV spectrum of CH3CH2C(O)O2, rate constant for self-reaction, and rate constant for cross-reaction with CH3CH2O2 were determined: sigma(207 nm) = (6.71 +/- 0.19) x 10(-18) cm2 molecule(-1), k(CH3CH2C(O)O2 + CH3CH2C(O)O2) = (1.68 +/- 0.08) x 10(-11), and k(CH3CH2C(O)O2 + CH3CH2O2) = (1.20 +/- 0.06) x 10(-11) cm3 molecule(-1) s(-1), where quoted uncertainties only represent 2sigma statistical errors. The infrared spectrum of C2H5C(O)O2NO2 was recorded, and products of the Cl-initiated oxidation of CH3CH2CHO in the presence of O2 with, and without, NO(x) were identified. Results are discussed with respect to the atmospheric chemistry of propionaldehyde.  相似文献   

4.
The kinetics and mechanism of oxidation of CF3CHFOCH3 was studied using an 11.5-dm3 environmental reaction chamber. OH radicals were produced by UV photolysis of an O3-H2O-He mixture at an initial pressure of 200 Torr in the chamber. The rate constant of the reaction of CF3CHFOCH3 with OH radicals (k1) was determined to be (1.77 +/- 0.69) x 10(-12) exp[(-720 +/- 110)/T] cm3 molecule(-1)(s-1) by means of a relative rate method at 253-328 K. The mechanism of the reaction was investigated by FT-IR spectroscopy at 298 K. CF3CHFOC(O)H, FC(O)OCH3, and COF2 were determined to be the major products. The branching ratio (k1a/k1b) for the reactions CF3CHFOCH3 + OH --> CF3CHFOCH2* + H2O (k1a) and CF3CHFOCH3 + OH --> CF3CF*OCH3 + H2O (k1b) was estimated to be 4.2:1 at 298 K from the yields of CF3CHFOC(O)H, FC(O)OCH3, and COF2. The rate constants of the reactions of CF3CHFOC(O)H (k2) and FC(O)OCH3 (k3) with OH radicals were determined to be (9.14 +/- 2.78) x 10(-13) exp[(-1190 +/- 90)/T] and (2.10 +/- 0.65) x 10(-13) exp[(-630 +/- 90)/T] cm3 molecule(-1)(s-1), respectively, by means of a relative rate method at 253-328 K. The rate constants at 298 K were as follows: k1 = (1.56 +/- 0.06) x 10-13, k2 = (1.67 +/- 0.05) x 10-14, and k3 = (2.53 +/- 0.07) x 10-14 cm3 molecule(-1)(s-1). The tropospheric lifetimes of CF3CHFOCH3, CF3CHFOC(O)H, and FC(O)OCH3 with respect to reaction with OH radicals were estimated to be 0.29, 3.2, and 1.8 years, respectively.  相似文献   

5.
The rate of the reaction 1, HCO+O2-->HO2+CO, has been determined (i) at room temperature using a slow flow reactor setup (20 mbarH2+HCO+CO, into additional HCO radicals. The rate constants of reaction 4 were determined from unperturbed photolysis experiments to be k4(295 K)=(3.6+/-0.3)x10(10) cm3 mol-1 s-1 and k4(769-1107 K)=5.4x10(13)exp(-18 kJ mol-1/RT) cm3 mol-1 s-1(Delta log k4=+/-0.12).  相似文献   

6.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

7.
A discharge-flow system, coupled to cavity-enhanced absorption spectroscopy (CEAS) detection systems for NO3 at lambda=662 nm and NO2 at lambda=404 nm, was used to investigate the kinetics of the reactions of NO3 with eight peroxy radicals at P approximately 5 Torr and T approximately 295 K. Values of the rate constants obtained were (k/10(-12) cm3 molecule-1 s-1): CH3O2 (1.1+/-0.5), C2H5O2 (2.3+/-0.7), CH2FO2 (1.4+/-0.9), CH2ClO2 (3.8(+1.4)(-2.6)), c-C5H9O2 (1.2(+1.1)(-0.5)), c-C6H11O2 (1.9+/-0.7), CF3O2 (0.62+/-0.17) and CF3CFO2CF3 (0.24+/-0.13). We explore possible relationships between k and the orbital energies of the reactants. We also provide a brief discussion of the potential impact of the reactions of NO3 with RO2 on the chemistry of the night-time atmosphere.  相似文献   

8.
The kinetics of the reactions of chlorinated methyl radicals (CH2Cl, CHCl2, and CCl3) with NO2 have been studied in direct measurements at temperatures between 220 and 360 K using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated at 193 or 248 nm by pulsed laser photolysis of appropriate precursors. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of NO2 being in large excess over radical concentrations. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (1-6 Torr) and are found to depend on temperature as follows: k(CH2Cl + NO2) = (2.16 +/- 0.08) x 10(-11) (T/300 K)(-1.12+/-0.24) cm3 molecule(-1) s(-1) (220-363 K), k(CHCl2 + NO2) = (8.90 +/- 0.16) x 10(-12) (T/300 K)(-1.48+/-0.13) cm3 molecule(-1) s(-1) (220-363 K), and k(CCl3 + NO2) = (3.35 +/- 0.10) x 10(-12) (T/300 K)(-2.2+/-0.4) cm3 molecule(-1) s(-1) (298-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the reactions CH2Cl + NO2, CHCl2 + NO2, and CCl3 + NO2, the products observed are formaldehyde, CHClO, and phosgene (CCl2O), respectively. In addition, a weak signal for the HCl formation has been detected for the CHCl2 + NO2 reaction.  相似文献   

9.
Rate constants for the reactions of OH radicals and NO3 radicals with O,O-diethyl methylphosphonothioate [(C(2)H(5)O)(2)P(S)CH(3); DEMPT] and O,O,O-triethyl phosphorothioate [(C(2)H(5)O)(3)PS; TEPT] have been measured using relative rate methods at atmospheric pressure of air over the temperature range 296-348 K for the OH radical reactions and at 296 +/- 2 K for the NO(3) radical reactions. At 296 +/- 2 K, the rate constants obtained for the OH radical reactions (in units of 10(-11) cm(3) molecule(-1) s(-1)) were 20.4 +/- 0.8 and 7.92 +/- 0.27 for DEMPT and TEPT, respectively, and those for the NO(3) radical reactions (in units of 10(-15) cm(3) molecule(-1) s(-1)) were 2.01 +/- 0.20 and 1.03 +/- 0.10, respectively. Upper limits to the rate constants for the reactions of O(3) with DEMPT and TEPT of <6 x 10(-20) cm(3) molecule(-1) s(-1) were determined in each case. Rate constants for the OH radical reactions, measured relative to k(OH + alpha-pinene) = 1.21 x 10(-11) e(436/T) cm(3) molecule(-1) s(-1), resulted in the Arrhenius expressions k(OH + DEMPT) = 1.08 x 10(-11) e(871+/-25)/T cm(3) molecule(-1) s(-1) and k(OH + TEPT) = 8.21 x 10(-13) e(1353+/-49)/T cm(3) molecule(-1) s(-1) over the temperature range 296-348 K, where the indicated errors are two least-squares standard deviations and do not include the uncertainties in the reference rate constant. Diethyl methylphosphonate was identified and quantified from the OH radical and NO(3) radical reactions with DEMPT, with formation yields of 21 +/- 4%, independent of temperature, from the OH radical reaction and 62 +/- 11% from the NO(3) radical reaction at 296 +/- 2 K. Similarly, triethyl phosphate was identified and quantified from the OH radical and NO(3) radical reactions with TEPT, with formation yields of 56 +/- 9%, independent of temperature, from the OH radical reaction and 78 +/- 15% from the NO(3) radical reaction at 296 +/- 2 K.  相似文献   

10.
We report rate coefficients at 293 K for the collisional relaxation of H2O molecules from the highly excited /04>(+/-) vibrational states in collisions with H2O, Ar, H2, N2, and O2. In our experiments, the mid R:04(-) state is populated by direct absorption of radiation from a pulsed dye laser tuned to approximately 719 nm. Evolution of the population in the (/04>(+/-)) levels is observed using the combination of a frequency-quadrupled Nd:YAG laser, which selectively photolyses H2O(/04>(+/-)), and a frequency-doubled dye laser, which observes the OH(v=0) produced by photodissociation via laser-induced fluorescence. The delay between the pulse from the pump laser and those from the photolysis and probe lasers was systematically varied to generate kinetic decays. The rate coefficients for relaxation of H2O(/04>(+/-)) obtained from these experiments, in units of cm3 molecule(-1) s(-1), are: k(H2O)=(4.1+/-1.2) x 10(-10), k(Ar)=(4.9+/-1.1) x 10(-12), k(H2)=(6.8+/-1.1) x 10(-12), k(N2)=(7.7+/-1.5) x 10(-12), k(O2)=(6.7+/-1.4) x 10(-12). The implications of these results for our previous reports of rate constants for the removal of H2O molecules in selected vibrational states by collisions with H atoms (P. W. Barnes et al., Faraday Discuss. Chem. Soc. 113, 167 (1999) and P. W. Barnes et al., J. Chem. Phys. 115, 4586 (2001).) are fully discussed.  相似文献   

11.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF(3)CH(2)C(O)H and CF(3)CH(2)CH(2)OH in 700 Torr of N(2) or air diluent at 296 +/- 2 K. The rate constants determined were k(Cl+CF(3)CH(2)C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF(3)CH(2)C(O)H) = (2.57 +/- 0.44) x 10(-12), k(Cl+CF(3)CH(2)CH(2)OH) = (1.59 +/- 0.20) x 10(-11), and k(OH+CF(3)CH(2)CH(2)OH) = (6.91 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1). Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the absence of NO show the sole primary product to be CF(3)CH(2)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the presence of NO show the primary products to be CF(3)CH(2)C(O)H (81%), HC(O)OH (10%), and CF(3)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)C(O)H in the absence of NO show the primary products to be CF(3)C(O)H (76%), CF(3)CH(2)C(O)OH (14%), and CF(3)CH(2)C(O)OOH (< or =10%). As part of this work, an upper limit of k(O(3)+CF(3)CH(2)CH(2)OH) < 2 x 10(-21) cm(3) molecule(-1) s(-1) was established. Results are discussed with respect to the atmospheric chemistry of fluorinated alcohols.  相似文献   

12.
Cavity ring-down spectroscopy was used to study the reaction of ClOO with NO in 50-150 Torr total pressure of O2/N2 diluent at 205-243 K. A value of k(ClOO+NO) = (4.5 +/- 0.9) x 10(-11) cm3 molecule(-1) s(-1) at 213 K was determined (quoted uncertainties are two standard deviations). The yield of NO(2) in the ClOO + NO reaction was 0.18 +/- 0.02 at 213 K and 0.15 +/- 0.02 at 223 K. An upper limit of k(ClOO+Cl2) < 3.5 x 10(-14) cm3 molecule(-1) s(-1) was established at 213 K. Results are discussed with respect to the atmospheric chemistry of ClOO and other peroxy radicals.  相似文献   

13.
Pulse radiolysis and flash photolysis are used to generate the hyponitrite radicals (HN2O2(*)/N2O2(*-)) by one-electron oxidation of the hyponitrite in aqueous solution. Although the radical decay conforms to simple second-order kinetics, its mechanism is complex, comprising a short chain of NO release-consumption steps. In the first, rate-determining step, two N2O2(*-) radicals disproportionate with the rate constant 2k = (8.2 +/- 0.5) x 10(7) M(-1) s(-1) (at zero ionic strength) effectively in a redox reaction regenerating N2O2(2-) and releasing two NO. This occurs either by electron transfer or, more likely, through radical recombination-dissociation. Each NO so-produced rapidly adds to another N2O2(*-), yielding the N3O3(-) ion, which slowly decomposes at 300 s(-1) to the final N2O + NO2(-) products. The N2O2(*-) radical protonates with pKa = 5.6 +/- 0.3. The neutral HN2O2(*) radical decays by an analogous mechanism but much more rapidly with the apparent second-order rate constant 2k = (1.1 +/- 0.1) x 10(9) M(-1) s(-1). The N2O2(*-) radical shows surprisingly low reactivity toward O2 and O2(*-), with the corresponding rate constants below 1 x 10(6) and 5 x 10(7) M(-1) s(-1). The previously reported rapid dissociation of N2O2(*-) into N2O and O(*-) does not occur. The thermochemistry of HN2O2(*)/N2O2(*-) is discussed in the context of these new kinetic and mechanistic results.  相似文献   

14.
The CH2Cl + CH3 (1) and CHCl2 + CH3 (2) cross-radical reactions were studied by laser photolysis/photoionization mass spectroscopy. Overall rate constants were obtained in direct real-time experiments in the temperature region 301-800 K and bath gas (helium) density (6-12) x 10(16) atom cm(-3). The observed rate constant of reaction 1 can be represented by an Arrhenius expression k1 = 3.93 x 10(-11) exp(91 K/T) cm3 molecule(-1) s(-1) (+/-25%) or as an average temperature-independent value of k1= (4.8 +/- 0.7) x 10(-11) cm3 molecule(-1) s(-1). The rate constant of reaction 2 can be expressed as k2= 1.66 x 10(-11) exp(359 K/T) cm3 molecule(-1) s(-1) (+/-25%). C2H4 and C2H3Cl were detected as the primary products of reactions 1 and 2, respectively. The experimental values of the rate constant are in reasonable agreement with the prediction based on the "geometric mean rule." A separate experimental attempt to determine the rate constants of the high-temperature CH2Cl + O2 (10) and CHCl2 + O2 (11) reaction resulted in an upper limit of 1.2 x 10(-16) cm(3) molecule(-1) s(-1) for k10 and k11 at 800 K.  相似文献   

15.
The rate constants for , HCO + NO --> HNO + CO, and , HCO + NO(2)--> products, have been measured at temperatures between 770 K < T < 1305 K behind reflected shock waves and, for the purpose of a consistency check, in a slow flow reactor at room temperature. HCO radicals were generated by 193 nm excimer laser photolysis of diluted gas mixtures containing glyoxal, (CHO)(2), and NO or NO(2) in argon and were monitored using frequency modulation (FM) absorption spectroscopy. Kinetic simulations based on a comprehensive reaction mechanism showed that the rate constants for the title reactions could be sensitively extracted from the measured HCO profiles. The determined high temperature rate constants are k(1)(769-1307 K) = (7.1 +/- 2.7) x 10(12) cm(3) mol(-1) s(-1) and k(2)(804-1186 K) = (3.3 +/- 1.8) x 10(13) cm(3) mol(-1) s(-1). The room temperature values were found to be in very good agreement with existing literature data and show that both reactions are essentially temperature independent. The weak temperature dependence of can be explained by the interplay of a dominating direct abstraction pathway and a complex-forming mechanism. Both pathways yield the products HNO + CO. In contrast to , no evidence for a significant contribution of a direct high temperature abstraction channel was found for . Here, the observed temperature independent overall rate constant can be described by a complex-forming mechanism with several product channels. Detailed information on the strongly temperature dependent channel branching ratios is provided. Moreover, the high temperature rate constant of , OH + (CHO)(2), has been determined to be k(7) approximately 1.1 x 10(13) cm(3) mol(-1) s(-1).  相似文献   

16.
A high-pressure turbulent flow reactor coupled with a chemical ionization mass spectrometer was used to investigate the minor channel (1b) producing nitric acid, HNO3, in the HO2 + NO reaction for which only one channel (1a) is known so far: HO2 + NO --> OH + NO2 (1a), HO2 + NO --> HNO3 (1b). The reaction has been investigated in the temperature range 223-298 K at a pressure of 200 Torr of N2 carrier gas. The influence of water vapor has been studied at 298 K. The branching ratio, k1b/k1a, was found to increase from (0.18(+0.04/-0.06))% at 298 K to (0.87(+0.05/-0.08))% at 223 K, corresponding to k1b = (1.6 +/- 0.5) x 10(-14) and (10.4 +/- 1.7) x 10(-14) cm3 molecule(-1) s(-1), respectively at 298 and 223 K. The data could be fitted by the Arrhenius expression k1b = 6.4 x 10(-17) exp((1644 +/- 76)/T) cm3 molecule(-1) s(-1) at T = 223-298 K. The yield of HNO3 was found to increase in the presence of water vapor (by 90% at about 3 Torr of H2O). Implications of the obtained results for atmospheric radicals chemistry and chemical amplifiers used to measure peroxy radicals are discussed. The results show in particular that reaction 1b can be a significant loss process for the HO(x) (OH, HO2) radicals in the upper troposphere.  相似文献   

17.
In the present work, phenylperoxy radicals were generated by stationary 254 nm photolysis of iodobenzene and nitrosobenzene in the presence of O(2) and NO(2) at 298 K and a total pressure of 1 bar (M = N(2)). Experiments were performed on time scales of seconds or minutes in a temperature controlled photoreactor made of quartz (v = 209 L). Major gas phase products identified and quantified in situ by long-path IR absorption include N(2)O(5), NO, HONO, HNO(3), CO, and o-nitrophenol. In addition, evidence is presented for the formation of an aerosol consisting of p-nitrophenol. The occurrence of N(2)O(5) as a major product in both reaction systems, the strong loss of NO(2) in the iodobenzene system and the comparison of measured product distributions with the results of numerical model calculations suggest that the reaction C(6)H(5)O(2) + NO(2) --> C(6)H(5)O + NO(3), k(5)occurs in both photolysis systems, a major part of the NO(3) being scavenged as N(2)O(5). The results of ab initio calculations imply that proceeds via a short-lived peroxynitrate intermediate. In the photolysis of nitrosobenzene-NO(2)-O(2)-N(2) mixtures, NO and NO(2) compete for C(6)H(5)O(2) radicals. Comparison of measured and modelled product distributions allows to set a lower limit of k(5) > 1 x 10(-12) cm(3) molecule(-1) s(-1) at 298 K. This lower limit is consistent with the assumption that k(5) is equal to the high pressure recombination rate constant of RO(2) + NO(2) --> RO(2)NO(2) reactions, i.e. with k(5) approximately 7 x 10(-12) cm(3) molecule(-1) s(-1) at 298 K, 1bar.  相似文献   

18.
Smog chamber/Fourier transform infrared (FTIR) and laser-induced fluorescence (LIF) spectroscopic techniques were used to study the atmospheric degradation of CH3CHF2. The kinetics and products of the Cl(2P(3/2)) (denoted Cl) atom- and the OH radical-initiated oxidation of CH3CHF2 in 700 Torr of air or N2; diluents at 295 +/- 2 K were studied using smog chamber/FTIR techniques. Relative rate methods were used to measure k(Cl + CH3CHF2) = (2.37 +/- 0.31) x 10(-13) and k(OH + CH3CHF2) = (3.08 +/- 0.62) x 10(-14) cm3 molecule(-1) s(-1). Reaction with Cl atoms gives CH3CF2 radicals in a yield of 99.2 +/- 0.1% and CH2CHF2 radicals in a yield of 0.8 +/- 0.1%. Reaction with OH radicals gives CH3CF2 radicals in a yield >75% and CH2CHF2 radicals in a yield <25%. Absolute rate data for the Cl reaction were measured using quantum-state selective LIF detection of Cl(2P(j)) atoms under pseudo-first-order conditions. The rate constant k(Cl + CH3CHF2) was determined to be (2.54 +/- 0.25) x 10(-13) cm3 molecule(-1) s(-1) by the LIF technique, in good agreement with the relative rate results. The removal rate of spin-orbit excited-state Cl(2P(1/2)) (denoted Cl) in collisions with CH3CHF2 was determined to be k(Cl + CH3CHF2) = (2.21 +/- 0.22) x 10(-10) cm3 molecule(-1) s(-1). The atmospheric photooxidation products were examined in the presence and absence of NO(x). In the absence of NO(x)(), the Cl atom-initiated oxidation of CH3CHF2 in air leads to formation of COF2 in a molar yield of 97 +/- 5%. In the presence of NO(x), the observed oxidation products include COF2 and CH3COF. As [NO] increases, the yield of COF2 decreases while the yield of CH3COF increases, reflecting a competition for CH3CF2O radicals. The simplest explanation for the observed dependence of the CH3COF yield on [NO(x)] is that the atmospheric degradation of CH3CF2H proceeds via OH radical attack to give CH3CF2 radicals which add O2 to give CH3CF2O2 radicals. Reaction of CH3CF2O2 radicals with NO gives a substantial fraction of chemically activated alkoxy radicals, [CH3CF2O]. In 1 atm of air, approximately 30% of the alkoxy radicals produced in the CH3CF2O2 + NO reaction possess sufficient internal excitation to undergo "prompt" (rate >10(10) s(-1)) decomposition to give CH3 radicals and COF2. The remaining approximately 70% become thermalized, CH3CF2O, and undergo decomposition more slowly at a rate of approximately 2 x 10(3) s(-1). At high concentrations (>50 mTorr), NO(x) is an efficient scavenger for CH3CF2O radicals leading to the formation of CH3COF and FNO.  相似文献   

19.
The primary products of n-butoxy and 2-pentoxy isomerization in the presence and absence of O(2) have been detected using pulsed laser photolysis-cavity ringdown spectroscopy (PLP-CRDS). Alkoxy radicals n-butoxy and 2-pentoxy were generated by photolysis of alkyl nitrite precursors (n-butyl nitrite or 2-pentyl nitrite, respectively), and the isomerization products with and without O(2) were detected by infrared cavity ringdown spectroscopy 20 μs after the photolysis. We report the mid-IR OH stretch (ν(1)) absorption spectra for δ-HO-1-C(4)H(8)?, δ-HO-1-C(4)H(8)OO?, δ-HO-1-C(5)H(10)?, and δ-HO-1-C(5)H(10)OO?. The observed ν(1) bands are similar in position and shape to the related alcohols (n-butanol and 2-pentanol), although the HOROO? absorption is slightly stronger than the HOR? absorption. We determined the rate of isomerization relative to reaction with O(2) for the n-butoxy and 2-pentoxy radicals by measuring the relative ν(1) absorbance of HOROO? as a function of [O(2)]. At 295 K and 670 Torr of N(2) or N(2)/O(2), we found rate constant ratios of k(isom)/k(O(2)) = 1.7 (±0.1) × 10(19) cm(-3) for n-butoxy and k(isom)/k(O(2)) = 3.4(±0.4) × 10(19) cm(-3) for 2-pentoxy (2σ uncertainty). Using currently known rate constants k(O(2)), we estimate isomerization rates of k(isom) = 2.4 (±1.2) × 10(5) s(-1) and k(isom) ≈ 3 × 10(5) s(-1) for n-butoxy and 2-pentoxy radicals, respectively, where the uncertainties are primarily due to uncertainties in k(O(2)). Because isomerization is predicted to be in the high pressure limit at 670 Torr, these relative rates are expected to be the same at atmospheric pressure. Our results include corrections for prompt isomerization of hot nascent alkoxy radicals as well as reaction with background NO and unimolecular alkoxy decomposition. We estimate prompt isomerization yields under our conditions of 4 ± 2% and 5 ± 2% for n-butoxy and 2-pentoxy formed from photolysis of the alkyl nitrites at 351 nm. Our measured relative rate values are in good agreement with and more precise than previous end-product analysis studies conducted on the n-butoxy and 2-pentoxy systems. We show that reactions typically neglected in the analysis of alkoxy relative kinetics (decomposition, recombination with NO, and prompt isomerization) may need to be included to obtain accurate values of k(isom)/k(O(2)).  相似文献   

20.
The reaction CH(3) + O(2) (+M) --> CH(3)O(2) (+M) was studied in the bath gases Ar and N(2) in a high-temperature/high-pressure flow cell at pressures ranging from 2 to 1000 bar and at temperatures between 300 and 700 K. Methyl radicals were generated by laser flash photolysis of azomethane or acetone. Methylperoxy radicals were monitored by UV absorption at 240 nm. The falloff curves of the rate constants are represented by the simplified expression k/k(infinity) approximately [x/(1 + x)]F(cent)(1/{1+[(log)(x)/)(N)(]2}) with x = k(0)/k(infinity) F(cent) approximately 0.33, and N approximately 1.47, where k(0) and k(infinity) denote the limiting low and high-pressure rate constants, respectively. At low temperatures, 300-400 K, and pressures >300 bar, a fairly abrupt increase of the rate constants beyond the values given by the falloff expressions was observed. This effect is attributed to a contribution from the radical complex mechanism as was also observed in other recombination reactions of larger radicals. Equal limiting low-pressure rate constants k(0) = [M]7 x 10(-31)(T/300 K)(-3.0) cm(6) molecule(-2) s(-1) were fitted for M = Ar and N(2) whereas limiting high-pressure rate constants k(infinity) = 2.2 x 10(-12)(T/300 K)(0.9) cm(3) molecule(-1) s(-1) were approached. These values are discussed in terms of unimolecular rate theory. It is concluded that a theoretical interpretation of the derived rate constants has to be postponed until better information of the potential energy surface is available. Preliminary theoretical evaluation suggests that there is an "anisotropy bottleneck" in the otherwise barrierless interaction potential between CH(3) and O(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号