首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The local lattice distortions and the electron paramagnetic resonance (EPR) parameters (g factors, hyperfine structure constants and zero-field splittings) for Cu2+, Mn2+ and Fe3+ in ZnWO4 are theoretically studied based on the perturbation calculations for rhombically elongated octahedral 3d9 and 3d5 complexes. The impurity centres on Zn2+ sites undergo the local elongations of 0.01, 0.002 and 0.013 Å along the C2 axis and the planar bond angle variations of 8.1°, 8.0° and 8.6° for Cu2+, Mn2+ and Fe3+, respectively, due to the Jahn–Teller effect and size and charge mismatch. In contrast to the host Zn2+ site with obvious axial elongation (~0.31 Å) and perpendicular (angular) rhombic distortion, all the impurity centres demonstrate more regular octahedral due to the above local lattice distortions. The copper centre exhibits significant Jahn–Teller reductions for the spin-orbit coupling and orbital angular momentum interactions, characterised by the Jahn–Teller reduction factor J (≈0.29 ? 1). The calculated EPR parameters agree well with the experimental results. The local structures of the impurity centres are analysed in view of the corresponding lattice distortions.  相似文献   

2.
In this work, the mechanism of enhanced photocatalysis of TiO2 with Fe3+ was studied using Sulfadiazine (SD) as the model compound. Results indicated that degradation rate of SD was enhanced by the addition of Fe3+ in TiO2 suspension. The crystalline structure of TiO2 particles was stable in suspensions. The hydroxyl radical generated by TiO2/Fe3+ (both TiO2 and Fe3+) photocatalysis was in a higher yield. Moreover, Fe2+ was found not to give an obvious impact on the SD degradation in TiO2 suspension, whereas Fe3+ had a notable effect. The adsorption amount of TiO2 was greatly enhanced by the addition of Fe3+ in suspensions. Finally, an interaction model of SD degradation in TiO2 suspension containing Fe3+ was also proposed by investigating of surface behaviors of TiO2 particles. It will be beneficial to use Fe3+ as the electron acceptors on the surface of TiO2 particles, which helps to improve the yield of hydroxyl radical.  相似文献   

3.
New type photocatalytic materials of Zn2+–Ni2+–Fe3+–CO32?LDHs were prepared by complexing agent-assisted homogeneous precipitation technique and Zn(NO3)2·6H2O, Ni(NO3)·6H2O, Fe(NO3)3·9H2O used as raw materials in the case of molar ratio of Zn2+/Ni2+/Fe3+ = 1:6:2. Zn2+–Ni2+–Fe3+–CO32?LDHs having a specific surface area of 96.5 m2/g. The structure and catalytic properties of the material were systematically studied. The experimental results show that the Zn2+–Ni2+–Fe3+–CO32?LDHs has a higher adsorption performance and lower band gap which make it an excellent catalyst for reducing the degradation of the methyl orange. Study on the process of photocatalytic reaction shows that Methyl Orange was adsorbed to the layer of Zn2+–Ni2+–Fe3+–CO32?LDHs, and then it was photodecomposed to inorganic molecules and ions by Zn2+, Ni2+, and Fe3+ on the surface of Zn2+–Ni2+–Fe3+–CO32?LDHs.  相似文献   

4.
Abstract

The tetragonal distortions of local octahedral environments of Cr3+, Fe3+ and Gd3+ ions in Rb2CdF4, Cs2CdF4, RbCdF3 and CsCdF3 crystals have been studied by analyzing their EPR spectra. From the studies, it is found that the tetragonal distortions for Cr3+ and Fe3+ impurity ions, which substitute Cd2+ and have nearly the same ionic radius, are close to each other, whereas that for Gd3+ impurity ion, having a larger ionic radius, is larger than those for Cr3+ and Fe3+ ions in the same crystal. It appears that not only the impurity-ligand distance, but also the tetragonal distortions of impurity centres in crystals are closely related to the size of impurity.  相似文献   

5.
Titanium dioxide (TiO2) thin films doping of various iron ion (Fe3+) concentrations were deposited on silicon (Si) (100) and quartz substrates by sol-gel Spin Coating technique followed by a thermal treatment at 600 °C. The structure, surface morphology and optical properties, as a function of the doping, have been studied by X-ray diffractometer (XRD), Raman, ultraviolet-visible (UV-vis) and Spectroscopic Ellipsometry (SE). XRD and Raman analyzes of our thin films show that the crystalline phase of TiO2 thin films comprised only the anatase TiO2, but the crystallinity decreased when the Fe3+ content increased from 0% to 20%. During the Fe3+ addition to 20%, the phase of TiO2 thin film still maintained the amorphous state. The grain size calculated from XRD patterns varies from 29.3 to 22.6 nm. The complex index and the optical band gap (Eg) of the films were determined by the spectroscopic ellipsometry analysis. We have found that the optical band gap decreased with an increasing Fe3+ content.  相似文献   

6.
Q Fu  S Y Wu  J Z Lin  J S Yao 《Pramana》2007,68(3):499-506
The impurity displacements for Fe3+ and Ru3+ in corundum (Al2O3) are theoretically studied using the perturbation formulas of the spin Hamiltonian parameters (zero-field splitting and anisotropic g factors) for a 3d5 (with high spin S = 5/2) and a 4d5 (with low spin S = 1/2) ion in trigonal symmetry, respectively. According to the investigations, the nd5 (n = 3 and 4) impurity ions may not locate at the ideal Al3+ site but undergo axial displacements by about 0.132 Å and 0.170 Å for Fe3+ and Ru3+, respectively, away from the center of the ligand octahedron along the C3 axis. The calculated spin Hamiltonian parameters based on the above axial displacements show good agreement with the observed values. The validity of the results is discussed.  相似文献   

7.
By analyzing the EPR spectra of Fe3+ ion in the fluorinde glasses, the local lattice structures around impurity Fe3+ ion in MF3:Fe3+ (M=Al, Ga) systems have been studied by means of diagonalizing the complete energy matrices of the electron-electron repulsion, the ligand-field and the spin-orbit coupling for a d5 configuration ion in a trigonal ligand-field. Both the second-order and fourth-order EPR parameters D and (aF) are taken simultaneously in the structural investigation. The results indicate that the local lattice structure around octahedral Fe3+ center has an expansion distortion for Fe3+ in MF3:Fe3+ (M=Al, Ga). The expansion distortion may be ascribed to the fact that the radius of Fe3+ ion is larger than that of Al3+ ion and Ga3+ ion, and the Fe3+ ion will push the fluoride ligands upwards and downwards, respectively. The local lattice structure parameters R=1.927 A, θ=55.538° for Fe3+ in AlF3:Fe3+ and R=1.931 A, θ=56.09° for Fe3+ in GaF3:Fe3+ are determined, respectively, and the EPR spectra of the MF3:Fe3+ (M=Al, Ga) systems are satisfactorily explained.  相似文献   

8.
Multilayered TiO2(Fe3+, PEG) films were deposited on glass and SiO2/glass substrates by sol-gel dipping method. The influence of Fe3+ and PEG(polyethylene glycol) concentrations, the number of layers, the thermal treatment time and the temperature on the optical and microstructural properties of the TiO2 films were studied.As-deposited TiO2(Fe3+, PEG) films were very porous, but after the thermal treatment at 500 °C, the PEG decomposed and burned out to porosity decreasing. Homogeneous nanostructured films were obtained, where the amorphous and the anatase phases coexist. XRD analysis showed that no rutile phase is observed in the films deposited on SiO2/glass as compared with those deposited directly on glass and that the presence of the anatase phase in the films without PEG is more evident in the three-layers film. The XRD intensity of the main peak of anatase from 25° decreases with the increase of PEG concentration.The optical gap of the TiO2(Fe3+, PEG) films is found in 2.52-2.56 eV range and does not essentially depend on the PEG content.  相似文献   

9.
We report on the detection of Fe i –B pairs in heavily B doped silicon using 57Fe emission Mössbauer spectroscopy following implantation of radioactive 57Mn+ parent ions (T 1/2?=?1.5 min) at elevated temperatures >?850 K. The Fe i –B pairs are formed upon the dissociation of Fe i –V pairs during the lifetime of the Mössbauer state (T 1/2?=?100 ns). The resulting free interstitial Fei diffuses over sufficiently large distances during the lifetime of the Mössbauer state to encounter a substitutional B impurity atom, forming Fe i –B pairs, which are stable up to ~1,050 K on that time scale.  相似文献   

10.
Magnetic and spectroscopic properties of the planar antiferromagnet K2FeF4 are determined by the Fe2+ ions at tetragonal sites. The two-dimensional easy-plane anisotropy exhibited by K2FeF4 is due to the zero field splitting (ZFS) terms arising from the orbital singlet ground state of Fe2+ ions with the spin S=2. To provide insight into the single-ion magnetic anisotropy of K2FeF4, the crystal field theory and the microscopic spin Hamiltonian (MSH) approach based on the tensor method is adopted. Survey of available experimental data on the crystal field energy levels and free-ion parameters for Fe2+ ions in K2FeF4 and related compounds is carried out to provide input for microscopic modeling of the ZFS parameters and the Zeeman electronic ones. The ZFS parameters are expressed in the extended Stevens notation and include contributions up to the fourth-order using as perturbation the spin-orbit and electronic spin-spin couplings within the tetragonal crystal field states of the ground 5D multiplet. Modeling of the ZFS parameters and the Zeeman electronic ones is carried out. Variation of these parameters is studied taking into account reasonable ranges of the microscopic ones, i.e. the spin-orbit and spin-spin coupling constants, and the energy level splittings, suitable for Fe2+ ions in K2FeF4 and Fe2+:K2ZnF4. Conversions between the ZFS parameters in the extended Stevens notation and the conventional ones are considered to enable comparison with the data of others. Comparative analysis of the MSH formulas derived earlier and our more complete ones indicates the importance of terms omitted earlier as well as the fourth-order ZFS parameters and the spin-spin coupling related contributions. The results may be useful also for Fe2+ ions at axial symmetry sites in related systems, i.e. Fe:K2MnF4, Rb2Co1−xFexF4, Fe2+:Rb2CrCl4, and Fe2+:Rb2ZnCl4.  相似文献   

11.
Natural zeolite supported Fe3+-TiO2 photocatalysts were synthesized for the sake of improving the recovery and photocatalytic efficiency of TiO2. The as-prepared materials were characterized by X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible diffuse reflection spectroscopy (UV-vis DRS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX). Methyl orange was used to estimate the photocatalytic activity of the samples. The results showed that zeolite inhibited the growth of TiO2 crystallite sizes. The Fe3+ concentration played an important role on the microstructure and photocatalytic activity of the samples. The iron ions could diffuse into TiO2 lattice to the form Fe-O-Ti bond and gave TiO2 the capacity to absorb light at lower energy levels. The photocatalytic activity of the samples could be enhanced as appropriate dosages of Fe3+ were doped.  相似文献   

12.
V K Jain  T M Srinivasan 《Pramana》1978,10(2):155-162
The electron paramagnetic resonance of Mn2+ and Gd3+ doped in Pr2Zn3(NO3)12.24H2O single crystals has been studied at X-band. Mn2+ substitutes for two Zn2+ sites, while Gd3+ substitutes for single type of Pr3+ sites. The spin-Hamiltonian analysis of the EPR spectra is presented at 298 K as well as 77 K.  相似文献   

13.
Titanium dioxide photocatalysts co-doped with iron (III) and lanthanum were prepared by a facile sol-gel method. The structure of catalysts was characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by the degradation of methylene blue in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. Doping with Fe3+ results in a lower anatase to rutile (A-R) phase transformation temperature for TiO2 particles, while doping with La3+ inhibits the A-R phase transformation, and co-doping samples indicate that Fe3+ partly counteracts the effect of La3+ on the A-R transformation property of TiO2. Fe-TiO2 has a long tail extending up the absorption edges to 600 nm, whereas La-TiO2 results in a red shift of the absorption. However, Fe and La have synergistic effect in the absorption of TiO2. Compared with Fe3+ and La3+ singly doped TiO2, the co-doped simple exhibits excellent visible light and UV light activity and the synergistic effect of Fe3+ and La3+ is responsible for improving the photocatalytic activity.  相似文献   

14.
谭鑫鑫  吕树臣 《光子学报》2014,39(7):1169-1175
采用共沉淀法制备了纳米晶ZrO2-Al2O3∶Er3+发光粉体.所制备的粉体室温下具有Er3+离子特征荧光发射,主发射在绿光,其中位于547 nm、560 nm的绿光最强,并得出稀土离子与基质之间有能量传递.对不同煅烧温度下的样品研究表明:因不同温度下所制得的样品晶相不同.研究了纳米晶ZrO2-Al2O3∶Er3+及ZrO2-Al2O3∶Er3+/Yb3+的上转换发光,并分析了上转换的跃迁机制.发现ZrO2-Al2O3∶Er3+的绿光为双光子过程,而ZrO2-Al2O3∶Er3+、Yb3+的上转换光谱中,红光和绿光也为双光子过程,而极弱的蓝光为三光子过程.讨论了Er3+的浓度猝灭现象.最适宜掺杂浓度的原子分数为2%(Er3+/Zr4+).  相似文献   

15.
Hui-Li Li  Ying Li  Mei-Ling Duan 《Molecular physics》2013,111(21-23):2643-2648
The octahedral (FeO6)9? and tetrahedral (FeO4)5? clusters in yttrium gallium garnet (YGG): Fe3+ system are investigated based on the 252 × 252 complete energy matrices for d5 configuration ions in trigonal and tetragonal ligand fields, moreover, the EPR and optical spectra are made unified calculation. The results indicate that the defect structures around Fe3+ centres display expansion effects at different temperatures 4.2 and 295 K, and which are close to those in YIG garnet, respectively. Simultaneously, the defect structure parameters for Fe3+ centres in YGG are determined, and the relationship between the defect structure and the temperature has been discussed.  相似文献   

16.
Calcium ferrite oxides were prepared by calcining a mixture powder of iron- and calcium oxide. The 57Fe-Mössbauer spectra of the calcium ferrites oxides were measured, revealing that the products should be Ca2Fe2O5 and CaFe2O4, the ratio of which was dependent of the Fe/Ca atomic ratio of the mixture powder.  相似文献   

17.
Li Wang  Na Wang  Hongqing He 《Molecular physics》2014,112(11):1600-1607
The reaction mechanisms of methylhydrazine (CH3NHNH2) with O(3P) and O(1D) atoms have been explored theoretically at the MPW1K/6-311+G(d,p), MP2/6-311+G(d,p), MCG3-MPWPW91 (single-point), and CCSD(T)/cc-pVTZ (single-point) levels. The triplet potential energy surface for the reaction of CH3NHNH2 with O(3P) includes seven stable isomers and eight transition states. When the O(3P) atom approaches CH3NHNH2, the heavy atoms, namely N and C atoms, are the favourable combining points. O(3P) atom attacking the middle-N atom in CH3NHNH2 results in the formation of an energy-rich isomer (CH3NHONH2) followed by migration of O(3P) atom from middle-N atom to middle-H atom leading to the product P6 (CH3NNH2+OH), which is one of the most favourable routes. The estimated major product CH3NNH2 is consistent with the experimental measurements. Reaction of O(1D) + CH3NHNH2 presents different features as compared with O(3P) + CH3NHNH2. O(1D) atom will first insert into C–H2, N1–H4, and N2–H5 bonds barrierlessly to form the three adducts, respectively. There are two most favourable paths for O(1D) + CH3NHNH2. One is that the C–N bond cleavage accompanied by a concerted H shift from O atom to N atom (mid-N) leads to the product PI (CH2O + NH2NH2), and the other is that the N–N bond rupture along with a concerted H shift from O to N (end-N) forms PIV (CH3NH2 + HNO). The similarities and discrepancies between two reactions are discussed.  相似文献   

18.
The improved perturbation formulas of the spin Hamiltonian parameters (zero-field splitting D and g factors) for a 3d5 ion in trigonally distorted tetrahedra are constructed from the cluster approach by including both the crystal-field and charge-transfer contributions. These formulas are applied to the studies of the local structures and the electron paramagnetic resonance (EPR) spectra for Fe3+ in CdX (X = S, Se, Te). The impurity Fe3+ is found not to occupy exactly the host Cd2+ sites but to experience the small outward shifts 0.014 and 0.006 Å away from the ligand triangles along the C3 axis in CdS and CdSe, respectively. The charge-transfer contributions to the spin Hamiltonian parameters are important and increase significantly with increasing atomic number of the ligand (i.e., S2? < Se2? < Te2?) arising from the decreases of charge-transfer energy levels and the increases of ligand spin–orbit coupling coefficients. The results are discussed.  相似文献   

19.
The reduction process of Bi3+, HTeO2+ and their mixtures on Au electrode surface was studied by cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy and chronoamperometry. XRD and EDS methods were also used to measure the reductive products prepared under different potentials and provide the evidences of the reactions. The results indicate that the reduction of HTeO2+ occurs at more positive potential than that of Bi3+, but its reduction rate is slower and adsorption phenomenon exists during its reduction process. Bi2Te3 compound can be obtained potentiostatically at a proper potential in all the mixed solutions with concentration ratio CHTe+O2/CBi3+ in our research range (0.1-10). But pure Bi2Te3 compound can only be obtained at 42 mV in the solution with concentration ratio CHTe+O2/CBi3+ equaling to 1. And the formation of Bi2Te3 compound is an inductive co-depositing process: (1) HTeO2+ + 4e + 3H+ → Te0 + 2H2O, (2) 3Te0 + 2Bi3+ + 6e → Bi2Te3.  相似文献   

20.
测量了不同掺杂浓度下Er3+离子在碲酸盐玻璃中的吸收光谱、发射光谱和Er3+离子的荧光寿命,计算了Er3+离子的发射截面σe,分析 了Er 3+离子掺杂浓度对其发光强度和荧光寿命的影响.结果表明,Er3+离子掺 杂浓度较低时,对其荧光强度和荧光寿命没有显著的影响;掺杂浓度高时,出现了浓度猝灭 效应,使Er3+离 子荧光光强度降低,荧光寿命下降.实验确定了掺杂浓度最优值,同时对浓度猝灭机制进行 了分析. 关键词: 碲锌碱玻璃 3+离子')" href="#">Er3+离子 掺杂浓度 发光和荧光寿命  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号