首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the enhanced separation of adenine (A), hypoxanthine (HX), 8-azaadenine (8-AA), thymine (T), cytosine (C), uracil (U) and guanine (G) by CZE dispersing carboxylic multiwalled carbon nanotubes (c-MWNTs) into the running buffer. The effect of important factors such as c-MWNT nanoparticle concentration, the acidity and concentration of running buffer, and separation voltage were investigated to acquire the optimum conditions. The seven purine and pyrimidine bases could be well separated within 16 min in a 35 cm effective length fused-silica capillary at a separation voltage of +8.0 kV in a 23 mM tetraborate buffer (pH 9.2) containing 8.0 x 10(-5) g/mL c-MWNTs. Under the optimal conditions, the linear ranges were of 2-250 microg/mL for A (R2 = 0.995), 3-200 microg/mL for U (R2 = 0.990) and G (R2 = 0.992), 3-250 microg/mL for T (R2 = 0.998), 2-200 microg/mL for C (R2 = 0.985) and 4-200 microg/mL for HX (R2 = 0.988) and 8-AA (R2 = 0.990). The detection limits were 0.9 microg/mL for A (S/N = 3), 2.4 microg/mL for U, 2.0 microg/mL for T, 1.5 microg/mL for C, 2.5 microg/mL for G and 3.0 microg/mL for HX and 8-AA. The proposed method was successfully applied for determining five purine and pyrimidine bases in yeast RNA.  相似文献   

2.
We describe a method for detecting DNA methylation. It is based on direct oxidation of DNA bases at a glassy carbon electrode (GCE) modified with film of a multiwalled carbon nanotube-β-cyclodextrin composite. This nano-structured film causes a strong enhancement on the oxidation current of DNA bases due to its large effective surface area and extraordinary electronic properties. Well-defined peaks were obtained as a result of electro-oxidation of guanine (at 0.67 V), adenine (at 0.92 V), thymine (at 1.11 V), cytosine (at 1.26 V), and 5-methylcytosine (at 1.13 V; all data vs. saturated calomel electrode (SCE)). The potential difference between 5-methylcytosine and cytosine (130 mV) is large enough to enable reliable simultaneous determination and analysis. The interference by thymine can be eliminated by following the principle of complementary pairing between purine and pyrimidine bases in DNA. The modified electrode was successfully applied to the evaluation of 5-methylcytosine in a fish sperm DNA, the methylation level of cytosine was found to be 7.47 %, and the analysis process took less than 1 h.  相似文献   

3.
A method based on micellar electrokinetic capillary chromatography with electrochemical detection was developed for the determination of cytosine, 5-methylcytosine (5-MC), thymine, adenine, and guanine in the hydrolysates of DNA. The working electrode was fabricated in a novel self-positioning carbon disc electrode system that can align the capillary outlet with the working electrode without a three-dimensional micromanipulator. The five analytes could be well separated within 10 min in a 40 cm length capillary at a separation voltage of 9 kV in a 40 mmol/l borate buffer (pH 10.0) containing 100 mmol/l sodium dodecyl sulfate. Good linearity was observed between peak current and concentration of bases over three orders of magnitude with the detection limits (SIN=3) ranging from 1.28 x 10(-6) to 5.02 x 10(-6) mol/l. This proposed method demonstrated long-term stability and reproducibility with relative standard deviations of less than 5% for both migration time and peak current (n=7). It has been successfully applied to determine bases including 5-MC in the hydrolysates of fish sperm DNA, calf thymus DNA, and DNA isolated from spleen cells of female mice.  相似文献   

4.
In this work, a poly(alizarin red)/Graphene composite film modified glassy carbon electrode (PAR/Graphene/GCE) was prepared for simultaneous determination of four DNA bases (guanine, adenine, thymine and cytosine) without any pretreatment. The morphology and interface property of PAR/Graphene films were examined by scanning electron microscopy and electrochemical impedance spectroscopy. The PAR/Graphene/GCE exhibited excellent electrocatalytic activity toward purine (guanine and adenine) and pyrimidine (thymine and cytosine) in 0.1 M phosphate buffer solution (pH 7.4). Under optimum conditions, differential pulse voltammetry was used to detect the oxidation of purine and pyrimidine. The results showed that PAR/Graphene/GCE exhibited well-separated peaks, low detection limit, high sensitivity and wide linear range for simultaneous detection of purine and pyrimidine. The proposed sensor also has good stability and reproducibility. Furthermore, the modified electrode was applied for the detection of DNA bases in a fish sperm DNA sample with satisfactory results.  相似文献   

5.
Summary Platinum(II) mixed ligand complexes with either purine or pyrimidine and imidazole derivatives were prepared and characterized by i.r., Raman and electronic spectroscopy. The compounds had the general formula [PtL1L2Cl2], where L1 = adenine, guanine, hypoxanthine, cytosine, 2-aminopyrimidine; L2 =N-methylimidazole,N-ethyl-imidazole orN-propylimidazole. The platinum(II) complexes had a square planar structure withcis-halogens. Purine or pyrimidine and imidazole derivatived bases acted as monodentate ligands coordinated via the N(7) of purine and N(3) of pyrimidine and imidazole derivatives.  相似文献   

6.
Summary Palladium(II) mixed ligand complexes with purine or pyrimidine and imidazole derivatives were prepared and characterized by i.r., Raman and electronic spectroscopy. The compounds have the general formula [Pd(L1)(L2)(X2)]; where L1 = adenine, guanine, hypoxanthine, cytosine, 2-aminopyrimidine, 4(6)-hydroxypyrimidine; L2 = N-methylimidazole, N-ethylimidazole or N-propylimidazole; X = Cl or Br. The complexes are square planar with cis-halogens. The purine, pyrimidine and imidazole bases act as monodentate ligands coordinated via the N(7) of purine and N(3) of pyrimidine and imidazole.  相似文献   

7.
Highly boron-doped diamond (BDD) electrode, have been examined for simultaneous detection of purine and pyrimidine bases in mild acidic media by using HPLC with amperometric detection. Cyclic voltammetry at as-deposited (AD) and anodically oxidized (AO) BDD were used to study the electrochemistry and to optimize the condition for HPLC applications. At AO BDD electrode, due to its higher overpotential of oxygen evolution reaction, well-defined anodic peaks were observed for the oxidation of purine and pyrimidine bases in acid medium, whereas at AD BDD the oxidation peak of thymine was overlapped with the anodic current of oxygen evolution. The chromatograms of adenine, guanine, cytosine, thymine and 5-methylcytosine mixture were well resolved by using a silica-based column and a solution of 5% acetonitrile in 100 mM ammonium acetate buffer (pH 4.25) as the mobile phase. The detection was carried out at AO BDD electrode at an applied potential of 1.6 V versus Ag/AgCl. Linear calibration curves were obtained within the concentration range from 0.1 to 10 μM with the limits of detection (S/N = 3) ranging from 26.3 to 162.1 nM, resulting in an order of magnitude higher sensitivities than those at conventional electrodes. HPLC analysis with diamond amperometric detector was successfully applied for determination of 5-methylcytosine in real DNA samples with high reproducibility. No deactivation of the electrode was found during cyclic voltammetric and HPLC measurements, indicating the high stability for analysis of biological samples.  相似文献   

8.
Methylated nucleosides play an important role in DNA/RNA function, and may affect republication by interrupting the base-pairing and base-stacking. In order to investigate the effect of methylation on the interaction between nucleic acid bases, this work presents the hydrogen-bonding and stacking interactions between 5-methylcytosine and guanine (G), cytosine (C) and G, 1-methyladenine and thymine (T), as well as adenine and T. Geometry optimization and potential energy surface scan have been performed for the involved complexes by MP2 calculations. The interaction energies, which were corrected for the basis-set superposition error by the full Boys–Bernardi counterpoise correction scheme, were used to evaluate the interaction intensity of these nucleic acid bases. The atoms in molecules theory and natural bond orbital analysis have been performed to study the hydrogen bonds in these complexes. The result shows that the methyl substitute contributes the stability to these complexes because it enhances either the hydrogen bonding or the staking interaction between nucleic acid bases studied.  相似文献   

9.
The acidities of multiple sites in the purine nucleobase adenine (1) and adenine alkyl derivatives 9-ethyladenine (2), 3-methyladenine (3), 1-methyladenine (4), and N,N-dimethyladenine (5) have been investigated for the first time, using computational and experimental methods to provide an understanding of adenine reactivity. We have previously measured two acidic sites on adenine, with the N9 site being 19 kcal mol(-)(1) more acidic than the N10 site (333 +/- 2 versus 352 +/- 4 kcal mol(-)(1), respectively). In this work, we have established that 9-ethyladenine has two sites more acidic than water: the N10 (352 +/- 4 kcal mol(-)(1)) and the C8 (374 +/- 2 kcal mol(-)(1)). We have likewise measured two acidities for 3-methyladenine, the N10 (347 +/- 4 kcal mol(-)(1)) and the C2 (370 +/- 3 kcal mol(-)(1)). For 1-methyladenine and N,N-dimethyladenine, we measure the N9H acidity to be 331 +/- 2 and 333 +/- 2 kcal mol(-)(1), respectively. We believe that the bracketing of only one site for the latter species is a kinetic effect, which we discuss further in the paper. Computationally, we have found the interesting result that some of the vinylic C-H sites in these purine bases are predicted to be much more acidic than water (DeltaH(acid) = 390.7 kcal mol(-)(1)) in the gas phase, on the order of 373 kcal mol(-)(1). The acidic vinylic C-H sites are always adjacent to an N-R group, and this pattern is maintained regardless of whether the site is on the five- or six-membered ring of the purine. Vinylic C-H sites elsewhere on the purine have calculated acidities of about 400 kcal mol(-)(1). The differing acidities are interpreted through electrostatic potential calculations. We also relate our results to the intriguing biochemical decarboxylation of orotate ribose monophosphate, which involves a vinylic anion adjacent to an N-R group; this decarboxylation is the last step in the de novo biosynthesis of pyrimidine nucleotides, and the enzyme that catalyzes the reaction, orotate ribose monophosphate decarboxylase, has been the subject of intense study recently, as its mechanism remains elusive.  相似文献   

10.
The relative induction of cyclobutane pyrimidine dimers (CPD) and pyrimidine (6-4)pyrimidone photoproducts ([6-4]PD) was quantified in the duplex homopolymers polydeoxyadenosine:polydeoxythymidine, polydeoxyguanosine:polydeoxycytidine and polydeoxyguanosine:polydeoxy-5-methylcytidine irradiated with UVC or UVB radiation. Cytosine methylation significantly increased the yield of cytosine (6-4)PD after irradiation with UVC light and of cytosine CPD and (6-4)PD after irradiation with UVB light. The data suggest that CPD and (6-4)PD are preferentially induced at 5-methylcytosine bases in DNA of cells exposed to sunlight and comprise a major component of the mutation spectrum leading to the initiation of sunlight-induced skin cancer.  相似文献   

11.
Release of bases form calf thymus DNA and three polynucleotides, induced by 20 ns excitation at 193 nm in aqueous solution at pH 7, was detected by HPLC. The quantum yields of formation of free bases (phi B) from double-stranded DNA (0.4 mM) are independent of intensity, indicating a one-quantum mechanism of N-glycosidic bond cleavage. The phi B values increase in the order guanine, thymine, adenine, cytosine, the latter being phi C approximately 7 x 10(-4) for double-stranded DNA under Ar and O2. The larger phi B values in N2O-saturated solution, e.g., phi C = 1.2 x 10(-3), are ascribed to additional base release via OH-adduct radicals. The phi B values of homopolynucleotides increase in the order poly(G), poly(A) and poly(C), e.g. phi C = 7 x 10(-3) under Ar, as do the efficiencies for base release per radical cation (eta B). A comparison of the eta B values with the efficiencies of single-strand breakage for poly(C), poly(A) and DNA shows a similar trend; both are markedly larger for pyrimidines than for purines. Pathways to undamaged bases, initiated from base radical cations, are proposed.  相似文献   

12.
5‐amino‐1,10‐phenanthroline‐Fe(II) complex is immobilized onto GC electrode and used for determination of DNA bases. Modifications are traced by electrochemical methods. All DNA bases are electroactive on the modified electrode. The Ips increased linearly with increase of DNA bases concentration. A wide response range was observed for each base (~4 orders for guanine (GA) and adenine (A); and ~2.5 orders for thymine (T) and cytosine (C)) with DLs of 0.15, 4.44, 133.0 and 230.0 nM, respectively. The electrode was applied for determination of calf‐thymus DNA bases. The value obtained for [(GA+C)/(A+T)], 0.78, is in good agreement with standard value, 0.77.  相似文献   

13.
Gel sequencing experiments with the 5'- and 3'-end-labeled oligonucleotides d(A3GA4GA5GA6GA3G) and d(AT) 10 have demonstrated that dimeric adenine photoproducts and thymine-adenine photoadducts constitute alkali-labile lesions in UV-irradiated DNA. On treatment with hot piperidine, DNA strand breakage occurs predominantly at the sites of 5'-adenines in the dimeric photoproducts and of 3'-adenines in the thymine-adenine photoadducts. With 5'-end-labeled oligonucleotides of mixed sequence, major UV-induced loci for alkaline cleavage map to purine bases flanked on their 5'-side by two pyrimidines. This behavior does not arise from enhanced photoreactivity of purines in this sequence context as has been inferred from photofootprinting studies. Instead, as shown by 3'-labeling and selective substitution with 5-methylcytosine, it results from the anomalous electrophoretic mobility of 5'-end-labeled fragments produced by alkaline cleavage of DNA at adjacent pyrimidine (6-4) pyrimidone photoproducts.  相似文献   

14.
A fluorescence quenching method was developed for the rapid determination of DNA and RNA using magdala red as fluorescence probe. In weakly acidic medium, the fluorescence of magdala red (lambdaex/lambdaem = 540/555 nm) can be largely quenched by DNA or RNA. The calibration graphs are linear over the range 0.01-1.2 microg/mL for both calf thymus DNA (CT DNA) and salmon DNA (SM DNA), and 0.015-1.0 microg/mL for yeast RNA, respectively. The corresponding detection limits are 6.0 ng/mL for CT DNA, 7.0 ng/mL for SM DNA and 15.0 ng/mL for yeast RNA, respectively. CT DNA could be determined in the presence of 20% (w/w) yeast RNA, and the relative standard deviation of six replicate measurements is 3.18% for 400 ng/mL of CT DNA. Interference from coexisting substances in the determination of DNA was also examined. Real samples were determined with satisfactory results.  相似文献   

15.
DNA甲基化-非甲基化碱基间堆积作用的理论研究   总被引:1,自引:0,他引:1  
运用二级Mфller-Plesset(MP2)理论方法和cc-pVDZ基组优化了6-甲基鸟嘌呤(O6-MethylG),4-甲基胸腺嘧啶(O4-MethylT)以及5-甲基胞嘧啶(C5-MethylC)与DNA碱基鸟嘌呤(G),腺嘌呤(A),胞嘧啶(C),胸腺嘧啶(T)之间的堆积构型.在MP2/aug-cc-pVXZ//MP2/cc-pVDZ(X=D,T)水平上,采用完全基组外推方法校正了堆积碱基对间的相互作用能,并用完全均衡校正法(CP)校正了基组重叠误差(BSSE).MP2计算结果表明,DNA碱基甲基化使得嘧啶-嘧啶、嘧啶-嘌呤堆积碱基间的平行旋转角发生明显改变,并使堆积碱基间的相互作用能增大.在MP2/cc-pVDZ计算级别上得到了各堆积碱基对的全电子波函数,并用分子中的原子理论(AIM)分析了堆积碱基对间的弱相互作用.AIM分析结果显示,甲基化增强了堆积碱基间的π-π作用,且甲基氢与相邻碱基间形成H2CH…X(X=O,N,CH3,NH2)等类型的氢键.甲基化损伤使碱基间重叠程度增大、π-π作用增强以及堆积碱基间形成多个氢键,是堆积作用能增加的主要原因.  相似文献   

16.
反相高效液相色谱法直接测定茶叶水提取物中的嘌呤碱   总被引:16,自引:0,他引:16  
丁明玉  杨海军  肖善强  陈培榕 《色谱》1999,17(5):459-461
用反相高效液相色谱法直接测定茶叶水提取物中的咖啡因、可可碱和茶碱,方法简便快速。在270nm检测波长下,可可碱、茶碱和咖啡因的检测下限分别为07,09和18mg/L,峰面积标准曲线在6~1000mg/L范围内具有良好的线性关系,线性相关系数为0998以上。  相似文献   

17.
Wang LY  Wang L  Gao F  Yu ZY  Wu ZM 《The Analyst》2002,127(7):977-980
Nanometer-sized fluorescent particles were successfully synthesized. The nanoparticles have a narrow, tunable, symmetric emission spectrum and a broad, continuous excitation spectrum. They are also photochemically stable. A synchronous fluorescence method was developed for the rapid determination of DNA with functionalized CdS as a fluorescence probe, based on the synchronous fluorescence quenching of functionalized CdS in the presence of DNA. Maximum fluorescence is produced at pH 7.0, with maximum excitation and emission wavelengths of 360 and 620 nm, respectively. The maximum emission wavelength of synchronous fluorescence is 354 nm when delta lambda = 260 nm. Under optimum conditions, the calibration graphs are linear over the range 0-3.5 microg mL(-1) for calf thymus DNA (CT-DNA) and 0.2-3.0 microg mL(-1) for fish sperm DNA. The corresponding detection limit is 0.01 microg mL(-1) for CT-DNA and 0.02 microg mL(-1) for fish sperm DNA. The relative standard deviation of seven replicate measurements is 2.2% for 1 microg mL(-1) calf thymus DNA and 2.4% for 1 microg mL(-1) fish sperm DNA. The method is simple, rapid and sensitive. The recovery and relative standard deviation are very satisfactory.  相似文献   

18.
A new cellulose derivative, octyl-modified quaternized cellulose (OMQC), was synthesized and used as electrolyte additive for the analysis of 5-methylcytosine by capillary electrophoresis with UV detection. While added in the background electrolyte, OMQC carrying octyl groups and quaternary ammonium groups exhibited dynamic coating ability. Capillary coated with OMQC was able to generate a stable anodal electro-osmotic flow even at pH 12.0. After several running conditions were optimized, a new method for quantification of genomic methylation level was developed on the basis of hydrolysis of DNA by formic acid and separation of nucleic acid bases by capillary electrophoresis. Cytosine and 5-methylcytosine were separated with a resolution near 4.0 in less than 10 min. The detection limits (S/N?=?3) were 1.1 and 1.5 μg/mL for cytosine and 5-methylcytosine, respectively.  相似文献   

19.
核酸水解产物嘌呤、嘧啶碱基在BDS柱上的分离及测定   总被引:7,自引:0,他引:7  
黄晓兰  李良秋  陈云华  张汉英 《色谱》2000,18(6):500-502
 用高效液相色谱法测定了核酸水解的中间产物及最终产物 6种嘌呤、嘧啶碱基 ,探讨了色谱柱、流动相等对其分离的影响 ,确定了最佳色谱条件为 :HypersilBDS C18柱 ,乙腈 0 1mol/LKH2 PO4 (H3 PO4 调节 pH至4 0 5 ) (体积比为 2∶98)作流动相 ,紫外检测器在 2 6 0nm波长下检测。方法的精密度在 3%以内 ,回收率在 82 %~ 114%。方法应用于酵母核酸样品的测定中 ,取得了很好的结果。  相似文献   

20.
3-Methyladenine DNA glycosylase II (AlkA) is an enzyme that cleaves a wide range of damaged bases from DNA. The gas-phase thermochemical properties (tautomerism, acidity, and proton affinity) have been measured and calculated for a series of AlkA purine substrates (7-methyladenine, 7-methylguanine, 3-methyladenine, 3-methylguanine, purine, 6-chloropurine, xanthine) that have not been heretofore examined. The damaged nucleobases are found to be more acidic than the normal nucleobases adenine and guanine. Because of this increased acidity, the damaged bases would be expected to be more easily cleaved from DNA by AlkA (their conjugate bases should be better leaving groups). We find that the gas-phase acidity correlates to the AlkA excision rates, which lends support to an AlkA mechanism wherein the enzyme provides a nonspecific active site, and nucleobase cleavage is dependent on the intrinsic N-glycosidic bond stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号