首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dynamics of ammonia clusters excited to the à state with 160 fs laser pulses of 6.2 eV was studied by pump-probe experiments with a low probe photon energy of 3.1 eV. Protonated as well as unprotonated cluster ion signals have been observed. The time evolution of both species is characteristic of the intermediate rearrangement and fragmentation processes. The observations strongly support a previously developed kinetic model for this dynamics with the signal at long delay times>6 ps reflecting the species involved in the absorption dissociation ionization (ADI) mechanism. Strong evidence is found for the formation of an internally ‘quasi protonated’ excited state and of ammoniated NH4 radicals.  相似文献   

2.
Ammonia dimers and trimers are studied in a femtosecond pump probe experiment. The pump laser (6.2 eV) excites the cluster into the à state which is ionized either by 4.6 eV or by 3.1 eV probe photons. Characteristic differences are explained in terms of a kinetic model involving an internal protonated neutral excited state as an intermediate.  相似文献   

3.
The structures and infrared spectra of protonated ammonia clusters NH(4+)(NH3)n, for n < or = 8, are investigated using density functional-theory (DFT) calculations and semiempirical DFT/molecular dynamics simulations. For n < 5 the clusters are found to be mostly stable up to 100 K, while the larger clusters (n > or = 5) isomerize. Temperature effects are taken into account by performing ab initio molecular dynamics simulations with the computationally tractable self-consistent charges density functional tight-binding method. The infrared spectra at 10 K for the most stable isomers for n = 3-8 compare qualitatively with predissociation experiments, and using a common scaling factor almost quantitative agreement is found. For n > or = 6 the notion of multiple isomers present under the experimental conditions is supported. Of the 13 stable structures for n = 8 only three are found to survive at 100 K. All other clusters isomerize. Cluster structures are inferred from the analysis of the cumulative radial distribution function of the ammonia molecules surrounding the NH(4+) core. The infrared spectra are found to be typical for the structure of the clusters, which should help to relate the experimentally measured infrared spectra to the number and identity of the contributing isomers. For clusters that reorganize to a more stable isomer during the dynamics, the infrared spectrum is generally similar to that of the stable isomer itself. The clusters are found to preferably form globular structures, although chain-like arrangements are also among the low-energy configurations.  相似文献   

4.
Measurements of the appearance potentials of ammonia cluster ions (NH3) n + and (NH3) n ?2NH 4 + using the threshold photoelectron photoion coincidence (TPEPICO) time-of-flight method are performed. The results agree well with other available data, however, solvation energies derived from these and from thermochemical data show significant discrepancies. The energetics for ammonia clusters are elucidated from various points of view.  相似文献   

5.
A reflecting time of flight mass spectrometer (RETOF) is used to study unimolecular and collision induced fragmentation of ammonia cluster ions. Synchrotron radiation from the BESSY electron storage ring is used in a range of photon energies from 9.08 up to 17.7 eV for single photon ionisation of neutral clusters in a supersonic beam. The threshold photoelectron photoion coincidence technique (TPEPICO) is used to define the energy initially deposited into the cluster ions. Metastable unimolecular decay (µs range) is studied using the RETOF's capacity for energy analysis. Under collision free conditions the by far most prominent metastable process is the evaporation of one neutral NH3 monomer from protonated clusters (NH3) n ? 2NH 4 + . Abundance of homogeneous vs. protonated cluster ions and of metastable fragments are reported as a function of photon energy and cluster size up ton=10.  相似文献   

6.
Using the efficient nonlinear conversion scheme which was recently developed in our group [M. Beutler, M. Ghotbi, F. Noack, and I. V. Hertel, Opt. Lett. 134, 1491 (2010); M. Ghotbi, M. Beutler, and F. Noack, ibid 35, 3492 (2010)] to provide intense sub-50 fs vacuum ultraviolet laser pulses we have performed the first real time study of ultrafast, photo-induced dynamics in the electronically excited A?-state of water clusters (H(2)O)(n) and (D(2)O)(n) , n=2-10. Three relevant time scales, 1.8-2.5, 10-30, and 50-150 fs, can be distinguished which-guided by the available theoretical results-are attributed to H (D)-ejection, OH (OD) dissociation, and a nonadiabatic transition through a conical intersection, respectively. While a direct quantitative comparison is only very preliminary, the present results provide a crucial test for future modeling of excited state dynamics in water clusters, and should help to unravel some of the many still unresolved puzzles about water.  相似文献   

7.
The ultrafast dynamics of clusters of trans-azobenzene anion (A-) solvated by oxygen molecules was investigated using femtosecond time-resolved photoelectron spectroscopy. The time scale for stripping off all oxygen molecules from A- was determined by monitoring in real time the transient of the A- rise, following an 800 nm excitation of A- (O2)n, where n = 1-4. A careful analysis of the time-dependent photoelectron spectra strongly suggests that for n > 1 a quasi-O4 core is formed and that the dissociation occurs by a bond cleavage between A- and conglomerated (O2)n rather than a stepwise evaporation of O2. With time and energy resolutions, we were able to capture the photoelectron signatures of transient species which instantaneously rise (<100 fs) then decay. The transient species are assigned as charge-transfer complexes: A.O2- for A- O2 and A.O4-(O2)n-2 for A-(O2)n, where n = 2-4. Subsequent to an ultrafast electron recombination, A- rises with two distinct time scales: a subpicosecond component reflecting a direct bond rupture of the A- -(O2)n nuclear coordinate and a slower component (1.6-36 ps, increasing with n) attributed to an indirect channel exhibiting a quasistatistical behavior. The photodetachment transients exhibit a change in the transition dipole direction as a function of time delay. Rotational dephasing occurs on a time scale of 2-3 ps, with a change in the sign of the transient anisotropy between A- O2 and the larger clusters. This behavior is a key indicator of an evolving cluster structure and is successfully modeled by calculations based on the structures and inertial motion of the parent clusters.  相似文献   

8.
The introduction of photoion-photoelectron coincidence techniques has made it possible to investigate photoionisation properties of heavy clusters, which are not accessible by conventional mass spectrometry. This technique has been further developed in combination with a zero-volt electron energy analyser and greatly improved in performance. The method has been applied to the investigation of different homogeneous and heterogeneous clusters. This type of cluster experiment requires both a very high resolution and a large dynamic range in order to identify also clusters present in low abundance. As an example, a series of coincidence mass spectra of Xe clusters has been recorded at different wavelengths. Below a photon energy of 11.1 eV, the range of observable clusters shifts to higher cluster sizes with decreasing energy. Appearance potentials and the binding energy of different cluster ions were obtained. Intensity fluctuations, already observed in spectra with electron bombardment ionisation (magic numbers), have also been detected in the coincidence spectra and become most pronounced near the ionisation threshold. This indicates that these fluctuations are caused by the size-dependent stability of the ionic and not the neutral cluster. Furthermore, the threshold size does not change linearly with cluster size. The binding energy per particle seems to change drastically aroundn=13 which indicates the existence of a shell structure in the cluster ion.  相似文献   

9.
We present a theoretical study of the ultrafast dynamics in noble metal clusters interacting with molecular oxygen which is of fundamental importance for the understanding and design of cluster-based heterogenous nanocatalysts. We demonstrate that intrinsic dynamical properties can significantly promote the reactivity of small noble metal clusters towards O2. This concept is illustrated by performing collision simulations between and clusters and O2 in the framework of the ab initio molecular dynamics (MD) using density functional theory (DFT). We show that different nature and efficiency of the internal vibrational energy redistribution (IVR) during the collisions with O2 are responsible for considerably different sticking probabilities of O2 to silver and gold clusters, respectively. In the case of , resonant IVR between the cluster and the O2 subunit activates the O–O bond and promotes the subsequent oxidation reaction. In contrast, in the case of fast dissipative IVR on the time scale of 1 ps leads to a higher sticking probability for O2 but the O–O bond is very rapidly deactivated and cannot participate in further oxidation processes. These findings allow us to introduce the nature of IVR as a criterion for promoting the reactivity of noble metal clusters. Such different behaviour of silver and gold clusters colliding with O2 originates from difference in relativistic effects which are considerably more pronounced in the case of gold clusters causing more directional rigid bonding in contrast to silver clusters with more s-metallic floppy character. Moreover, we demonstrate that breaking of O–O bond can be induced in by a selective excitation of the O–O bond with an ultrashort pulse in the infrared spectral range. This opens the perspective to control the action of nanocatalysts by employing shaped laser pulses and thus bridges the fields of femtochemistry and cluster nanocatalysis.  相似文献   

10.
11.
Fragmentation of sodium cluster ions (Na x + ,x<42) was studied via photoionisation of neutral precursors. Expansions of metal vapor out of cylindrical and conical nozzles yielded supersonic beams with differing cluster compositions. Measurements of photoionisation efficiency curves in the 3–6 eV range for both types of expansion allow quantitative separation of direct ionisation and unimolecular dissociation contributions to specific ion signals. Data for Na 8 + and Na 7 + are analysed to yield lower limits on bond energies. Results obtained for larger clusters are also discussed.  相似文献   

12.
《Chemical physics》1987,115(1):79-91
Dissociation spectra of NH3 clusters have been recorded using a cw CO2 laser. For the dimer two absorption bands have been found at 979 and 1004 cm−1, which originate from the excitation of two non-equivalent NH3 molecules. A tunneling motion is held responsible for the observed structure on one of these bands. The symmetry group of the NH3 dimer is presented considering the tunneling motion solely. Heavier NH3 clusters dissociate at frequencies between 1020 and 1100 cm−1. The dissociation spectrum of the SiH4-NH3 complex shows one peak centered at 972.3 cm−1.  相似文献   

13.
The ultrafast dynamics of UV-excited imidazole in the gas phase is investigated by theoretical nonadiabatic dynamics simulations and experimental time-resolved photoelectron spectroscopy. The results show that different electronic excited-state relaxation mechanisms occur, depending on the pump wavelength. When imidazole is excited at 239.6 nm, deactivation through the NH-dissociation conical intersection is observed on the sub-50 fs timescale. After 200.8 nm excitation, competition between NH-dissociation and NH-puckering conical intersections is observed. The NH-dissociation to NH-puckering branching ratio is predicted to be 21:4, and the total relaxation time is elongated by a factor of eight. A procedure for simulation of photoelectron spectra based on dynamics results is developed and employed to assign different features in the experimental spectra.  相似文献   

14.
The theory of shell correction developed for discussing fissing of heavy nuclei is applied to symmetric fragmentation of charged metal clusters. Assuming the effective potential of an anisotropic harmonic oscillator, we calculate the shell correction. We also calculate the energy of deformed charged droplets in the two-dimensional parameter space describing the deformation of droplets such as elongation and neck formation. The symmetric fragmentation of microclusters of alkali and noble metals is discussed.  相似文献   

15.
The ultrafast dynamics of isolated 9-fluorenone was studied by femtosecond time-resolved photoionization and photoelectron spectroscopy. The molecule was excited around 264-266 nm into the S(6) state. The experimental results indicate that the excitation is followed by a multistep deactivation. A time constant of 50 fs or less corresponds to a fast redistribution of energy within the initially excited manifold of states, i.e., a motion away from the Franck-Condon region. Internal conversion to the S(1) state then proceeds within 0.4 ps. The S(1) state is long-lived, and only a lower bound of 20 ps can be derived. In addition, we computed excited state energies and oscillator strengths by TD-DFT theory, supporting the interpretation of the experimental data.  相似文献   

16.
The photophysics of two donor-substituted truxenone derivatives has been studied by femtosecond time-resolved transient absorption spectroscopy. The systems consist of a central truxenone acceptor with three triarylamine (TARA) branches which act as electron donors. Upon excitation in the visible regime an electron is transferred from the donor to the acceptor, generating a charge-separated state. This state can be probed via the characteristic absorption of the TARA radical cation around 700 nm. A second absorption band around 420 nm exhibits the same kinetics and is assigned to an absorption of the radical anion of the truxenone moiety. The back electron transfer and the recovery of the ground state can be interpreted within the framework of Marcus theory. To study the dependence of the back electron transfer on the electronic coupling, the distance between the donor and the acceptor was adjusted. Two solvents were employed, dimethylsulfoxide and dichloroethane. A biexponential decay of the bands assigned to the charge-separated state was observed, with time constants in the picosecond range. Surprisingly, the rates for electron back transfer do not follow the simple picture of the donor-acceptor distance being the determining factor. The observations are explained within a model that additionally takes steric interactions between the donor and the acceptor into account.  相似文献   

17.
We report investigations of the vibrational dynamics of water molecules at the water–air and at the water–lipid interface. Following vibrational excitation with an intense femtosecond infrared pulse resonant with the O–H stretch vibration of water, we follow the subsequent relaxation processes using the surface-specific spectroscopic technique of sum frequency generation. This allows us to selectively follow the vibrational relaxation of the approximately one monolayer of water molecules at the interface. Although the surface vibrational spectra of water at the interface with air and lipids are very similar, we find dramatic variations in both the rates and mechanisms of vibrational relaxation. For water at the water–air interface, very rapid exchange of vibrational energy occurs with water molecules in the bulk, and this intermolecular energy transfer process dominates the response. For membrane-bound water at the lipid interface, intermolecular energy transfer is suppressed, and intramolecular relaxation dominates. The difference in relaxation mechanism can be understood from differences in the local environments experienced by the interfacial water molecules in the two different systems.  相似文献   

18.
Ultrafast optical Kerr effect spectroscopy has been used to study the orientational dynamics of benzene and benzene-d(6) confined in nanoporous sol-gel glass monoliths with a range of average pore sizes. All of the observed orientational diffusion of confined benzene is found to occur on a slower time scale than in the bulk, even in pores with diameters that are significantly larger than a benzene molecule. The orientational dynamics of benzene-d(6) are found to be inhibited to a lesser extent than those of benzene, which is attributed to the differences in wetting properties of the two liquids on silica. The decays are fit well by a sum of two exponentials, the faster of which depends on pore size. Similar results are found in pores that have been modified with trimethylsilyl groups, although the relaxation is faster than in unmodified pores. Comparison to Raman line width data for confined benzene-d(6) suggests that the liquid exhibits significant structuring at the pore walls, with the benzene molecules lying flat on the surfaces of unmodified pores.  相似文献   

19.
Fragmentation processes of highly excited neutral and charged atomic metal clusters are studied in the framework of an equilibrium statistical model. In the particular case of hot (near and above melting) neutral and charged sodium clusters of 100 and 200 atoms, a microcanonical Metropolis sampling is used to compute mass (or charge) correlation functions as a function of the excitation energy. This method allows to take the strong anharmonicities in the internal phonon spectrum realistically into account which are linked to the internal structural changes like melting. It is found that, at high enough excitation energy, the system exhibits a phase transition. This phase transition is specific for fragmenting finite systems. From the shape of the caloric curve one sees that the two phases involved are connected by a van der Waals loop characterizing a first order phase transition. Here we observe an enhanced fission and multifragmentation into two or more charged clusters with more than 10 atoms each. Various fragment correlations are studied.  相似文献   

20.
Clusters of krypton are generated in a supersonic expansion and size selected by deflection from a helium target beam. By measuring angular distributions for different fragment masses and time-of-flight distributions for fixed deflection angles and fragment masses, the complete fragmentation patterns for electron impact ionization at 70 eV are obtained from the dimer to the heptamer. For each of the neutral Kr(n) clusters studied, the main fragment is the monomer Kr(+) ion with a probability f(n)(1) > 90%. The probability of observing dimer Kr(2)(+) ions is much smaller than expected for each initial cluster size. The trimer ion Kr(3)(+) appears first from the neutral Kr(5), and its fraction increases with increasing neutral cluster size n, but is always much smaller than that of the monomer or dimer. For neutral Kr(7), all possible ion fragments are observed, but the monomer still represents 90% of the overall probability and fragments with n > 3 contribute less than 1% of the total. Aspects of the Kr(n) cluster ionization process and the experimental measurements are discussed to provide possible reasons for the surprisingly high probability of observing fragmentation to the Kr(+) monomer ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号