首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An investigation of the curing (polymerisation) rate of acrylamide was carried out using isothermal and non-isothermal DSC in order to estimate the time for complete conversion of monomer at ambient temperatures. The non-isothermal data were used to model the rate using integral isoconversional and incremental isoconversional kinetic methods. Applying the equations for integral isoconversional methods and extrapolating to ambient temperatures resulted in non-sensical conversion–time curves, where the time estimated decreased for increasing degree of conversion to be reached. This odd behaviour was attributed to the incorrectness of the integration where the kinetic parameters (e.g. the activation energy) are a function of conversion. The problem was addressed by applying incremental methods which provided more reasonable results as the integration is carried out over small conversion increments where the kinetic parameters are assumed to be constant. Estimates of the conversion were compared to isothermal measurements and, although isothermal DSC produced significant variability in the data, extrapolated estimates from non-isothermal kinetic analysis produced, at best, an upper boundary for the estimation of the time to reach a fixed degree of conversion.  相似文献   

2.
The thermokinetic parameters were investigated for cumene hydroperoxide (CHP), di-tert-butyl peroxide (DTBP), and tert-butyl peroxybenzoate (TBPB) by non-isothermal kinetic model and isothermal kinetic model by differential scanning calorimetry (DSC) and thermal activity monitor III (TAM III), respectively. The objective was to investigate the activation energy (E a) of CHP, DTBP, and TBPB applied non-isothermal well-known kinetic equation to evaluate the thermokinetic parameters by DSC. We employed TAM III to assess the thermokinetic parameters of three liquid organic peroxides, obtained thermal runaway data, and then used the Arrhenius plot to obtain the E a of liquid organic peroxides at various isothermal temperatures. In contrast, the results of non-isothermal kinetic algorithm and isothermal kinetic algorithm were acquired from a highly accurate procedure for receiving information on thermal decomposition characteristics and reaction hazard.  相似文献   

3.
Thermal analysis is one of the most widely used methods for studying the solid state of pharmaceutical substances. TG/DTG and DSC curves provide important information regarding the physical properties of the pharmaceutical compounds (stability, compatibility, polymorphism, kinetic analysis, phase transitions etc.). The purpose of a kinetic investigation is to calculate the kinetic parameters and the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the diazepam, nitrazepam and oxazepam thermal decomposition was performed, under non-isothermal and isothermal conditions and in a nitrogen atmosphere, for the temperature steps: 483, 498, 523, 538 and 553 K. The TG/DTG data were processed by three methods: isothermal model-fitting, Friedman’s isothermal-isoconversional and Nomen-Sempere non-parametric kinetics. In the model-fitting methods the kinetic triplets (f(α), A and E a) that defines a single reaction step resulted in being at variance with the multi-step nature of diazepines decomposition. The model-free approach represented by isothermal and non-isothermal isoconversional methods, gave dependences of the activation energies on the extent of conversion. It is very difficult to obtain an accord with the similar data which resulted under non-isothermal conditions from a previous work. The careful treatment of the kinetic parameters obtained in different thermal conditions was confirmed to be necessary, as well as a different strategy of experimental data processing.  相似文献   

4.
Isothermal and non-isothermal pyrolysis kinetics of Kapton polyimide   总被引:1,自引:0,他引:1  
The kinetics involved in the thermal decomposition of Kapton® polyimide 100HN under nitrogen atmosphere were studied by applying various fitting techniques to the isothermal and non-isothermal gravimetric data. The correlation of the reaction mechanism fitting, the analytical model fitting and the isoconversional method to these data was examined in relation to the kinetic parameters and the kinetic predictions. The mechanisms for solid-state reactions fit the isothermal data very well but result in highly uncertain values for the kinetic parameters when applied to the non-isothermal data. Isoconversional methods show that the apparent activation energy depends on the extent of conversion but do not provide information for the reaction order and the pre-exponential factor. Three single heating-rate analytical models by Coats-Redfern, MacCallum-Tanner and van Krevelen were analysed using the non-isothermal data. A multi-heating rate model is proposed and its validity is compared to the single-heating rate models on the basis of kinetic predictions.  相似文献   

5.
Vulcanisation of rubber compounds was studied by DSC under isothermal and non-isothermal conditions. The parameters of an Arrhenius-like equation describing the temperature dependence of induction period have been obtained both from isothermal and non-isothermal measurements. A new method for obtaining the kinetic parameters from non-isothermal measurements, based on the dependence of onset temperature of vulcanisation peak on heating rate, is presented. Also, a procedure for the evaluation of temperature difference between the furnace and sample is proposed. It has been shown that the treatment of non-isothermal DSC measurements gives the kinetic parameters free of systematic errors. The new method can also be used for studying other reactions exhibiting the induction period. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The curing of a thermosetting powder coating was studied by means of differential scanning calorimetry (DSC). The isothermal cure was simulated by non-isothermal experiments. The results of the simulation were compared with experimental isothermal data. From non-isothermal isoconversional procedures (free model), it was concluded that these permit simulation of the isothermal cure but do not enable us to determine the complete kinetic triplet (A preexponential factor, E activation energy, f(a) and/or g(a) function of conversion). Non-isothermal procedures based on a single heating rate or on master curves present difficulties for determination of all the kinetic parameters, due to the compensation effect between preexponential factor and activation energy. The kinetic triplet can be determined by a combination of various non-isothermal methods or by using experimental isothermal data in addition to non-isothermal data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Differential scanning calorimetry (dual furnace, null-balance, DSC) and optical microscopy (OM) have been used to study the isothermal crystallization kinetics of poly(oxymethylene)-POM. The non-isothermal crystallization of the same material has also been studied by optical microscopy. A very controversial problem is whether the isothermal kinetic parameters may be applied to describe the non-isothermal crystallization. The results show that the kinetic spherulite growth parameters obtained by non-isothermal optical microscopy are, within the experimental errors involved, the same as those obtained by isothermal optical microscopy or isothermal DSC. The importance of this finding is highlighted.  相似文献   

8.
Epoxy polymers     
The current use of non-isothermal DTA or DSC for the investigation of polymers is based upon assumptions which allow a number of conclusions supported only by data drawn from the DTA or DSC traces of prepolymer samples. A more adequate procedure involving the analysis of the DTA or DSC traces of several samples previously cured to different polymerization degrees under isothermal conditions is proposed. A comparison of the results obtained with the two procedures is reported for two composite materials.  相似文献   

9.
The stabilization of osteoporotic vertebrae with acrylic bone cement, called vertebroplasty, is a common procedure in modern surgery. However, the thermomechanical-chemically coupled material behaviour of curing bone cements makes the application even for experienced surgeons difficult and can lead to potential complications like heat necrosis, leaking bone cement, embolisms and postoperative load shifting. In order to reduce these potential complications, to minimize the risks and to better understand the occurring effects, the thermophysical properties of a commercial acrylic bone cement were investigated in detail using differential scanning calorimetry, volumetric dilatometry and temperature controlled rheometry. More specifically, the reaction kinetics, the specific heat, the thermal conductivity, the thermal expansion, the chemical shrinkage as well as the mechanical behaviour was studied during the reaction process of the bone cement. Furthermore, the explored material behaviour is described by a customized material model that takes into account all observed effects. With the aid of this model the inhomogeneous chemical, thermal and mechanical states that appear during the application and curing of acrylic bone cements, can be studied by finite element treatment.  相似文献   

10.
A natural graphite recommended for use in nuclear applications was analyzed using thermogravimetric analysis. The oxidation behaviour was unlike that expected for flake-like particles. The dynamic data displayed an apparent bimodal reaction rate curve as a function of temperature and degree of conversion. Nevertheless, it was possible to model this behaviour with a single rate constant, i.e. without the need for a parallel reaction type of kinetic mechanism. The approach used in this paper to model the gas–solid reaction of graphite and oxygen, provides a consistent framework to test the validity of complementary isothermal and non-isothermal data for a specific solid state reaction.  相似文献   

11.
Bone cements based on poly(methyl methacrylate) (PMMA) have been widely used in orthopedic surgeries for fixation of prostheses and filling of bone defects. Bone cements are produced through in situ and in vivo free radical bulk polymerizations, which are highly exothermic and are subject to strong gel and glass effects. As a consequence, high temperatures may be reached during application. Furthermore, residual monomer usually remains unreacted inside the body and may cause aseptic loosening and tissue damages. 1 In a companion work in this volume, it was shown that usual free-radical polymerization models might effectively describe the bone cement preparation 2 and therefore be used for quantitative analysis of the bone cement synthesis. In this work, a theoretical investigation based on a multicell reactor model is performed to study the bone cement production and allow for future optimization of the preparation procedure. It is shown that the degree of solubility of the pre-polymer powder in the liquid monomer is the most important variable during the bone cement preparation and that this variable should be manipulated for design and control of the operation in real applications.  相似文献   

12.
A novel kinetic model accounting for the observed asymptotic approach of the degree of polymerization (DP) to a limiting value significantly greater than unity on prolonged degradation is derived and applied to the solid-state degradation of cellulose (Kraft paper) and poly(acrylic acid) (PAA) under isothermal and non-isothermal conditions. Experimental data were fitted using two iterative computer algorithms: one for isothermal DP data and the other for non-isothermal DP data obtained under a linear temperature ramp. The apparent activation energy for the solid-state recombination of chain radicals was found to be low in each case and was attributed to the proximity of free radicals being facilitated by restrictions imposed by the polymer matrix. The application of the model to non-isothermal DP yielded rate parameters that could be reconciled with those obtained from isothermal analyses, suggesting the novel approach has much merit for the future study of polymer degradation.  相似文献   

13.
The shape of DSC curves of non-isothermal oxidation of fats was explained. Two main exothermic effects overlapped partially are caused by hydroperoxide formation (first peak) and by further oxidation of peroxides (second peak). The oxidation of oils and lipid analogues of various peroxide concentration showed that only the start of the oxidation process is affected by initial concentration of peroxides, other temperatures determined from DSC curves are not connected with this parameter. The computer simulations gave the best agreement of theoretical and experimental data for kinetic scheme of a two-step consecutive reaction with autocatalytic start. The comparison of activation energies calculated for isothermal and non-isothermal autooxidation of unsaturated fatty acids and their esters also confirmed this interpretation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Diphenyl(diphenylethynyl)silane ((ph–C≡C)2–Si–ph2) (DPDPES) was synthesized by the Grignard reaction. The corresponding isothermal and non-isothermal cure kinetics of DPDPES were analyzed by using differential scanning calorimetry (DSC), and the molecular structure was characterized by H-NMR. The results showed that all the cure curves were typically sigmoid shape and cure reactions could be described by an autocatalytic kinetic model by isothermal DSC. The kinetic data, for example, activation energy (E) and frequency factor (A), were 119.22 kJ/mol and 4.67 × 107 (s?1), respectively. The non-isothermal DSC analyses showed that E and A were 162.12 kJ/mol and 1.32 × 109 (s?1), respectively, and the reaction order was 0.94. Based on the research work of this paper, it can be said that the cure reaction of DPDPES monomer was of autocatalytic and diffusion-controlled characteristics, and the effect of the diffusion was more evident at low temperature. The cure reaction of DPDPES was a first-order kinetic reaction.  相似文献   

15.
The simplen th order model equation combined with the Arrhenius approach of the temperature dependency of the reaction rate constant is widely used in thermal analysis. The new Mettler software package for thermal analysis, GraphWare TA72 allows to access a full model comprising the power law and the crystallization kinetics (AvramiErofe'ev). The kinetics of the following reactions are studied to illustrate some applications:
  • thermal decomposition of dissolved dibenzoylperoxide, (dynamic and isothermal DSC measurement)
  • crystallization of polyethylene terephthalate (PET) (isothermal DSC measurements).
  • The kinetic model applied and the accuracy of the kinetic data obtained are discussed by means of a comparison of a predicted behaviour with the kinetic data measured isothermally.  相似文献   

    16.
    Poly(methyl methacrylate) (PMMA)-based polymers have been extensively used for manufacturing of artificial bone cements for treatment of osteoporosis. A typical bone cement recipe contains methyl methacrylate, which polymerizes in situ during cement application. An inherent problem of this reaction is the high amount of heat released during the cement preparation, which may lead to irreparable damage of living tissues. Optimization of PMMA-based bone cement (PMMABC) recipes is thus an important step towards safe and reliable clinical usage of these materials. A theoretical and experimental investigation is performed here to unveil the influence of some preparation variables on the production of PMMABC and to allow for future optimization of the PMMABC recipe. It is shown that the degree of mixing of the components of the recipe plays a fundamental role on the development of the temperature profile. For this reason, the PMMABC obtained with the in-situ blending of PMMA and barium sulfate during the suspension polymerization leads to much better homogeneity of the final test pieces and improved control of the temperature profile.  相似文献   

    17.
    Polyaniline sulfate‐zeolite composite was prepared by emulsion polymerization. Epoxy resin was cured using polyaniline‐sulfate salt and various amounts of polyaniline sulfate‐zeolite composite. The kinetics of the cure reaction for an epoxy resin based on the diglycidyl ether of bisphenol A (DGEBA) with polyaniline‐sulfate and polyaniline sulfate‐zeolite composite have been studied using differential scanning calorimetry (DSC) under isothermal and dynamic conditions. Isothermal kinetics analysis was performed using the phenomenological model of Kamal. Dynamic kinetic analysis was performed using Kissinger's method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

    18.
    In this research, an effort was undertaken to investigate radical polymerization kinetics using experimental data from DSC measurements and mechanistic or isoconversional models. Polymerization of a polar monomer, namely 2-hydroxyethyl methacrylate in the presence of benzoyl peroxide initiator was studied. The variation of the effective activation energy with conversion was directly interpreted in terms of the physical phenomena taking place during the reaction in a microscale. Both isothermal and non-isothermal DSC data were employed and the effect of diffusion-controlled phenomena on the reaction kinetics at different conversion regimes was assessed. Finally, the effect of the presence of nanofiller on polymerization kinetics and the activation energy values were estimated and correlated to physical phenomena taking place during polymerization.  相似文献   

    19.
    This work was aimed at the study of cure kinetics of two commercial thermosetting epoxy systems, Epikote resin 816 LV/Epikure F205 and Epikote resin 240/Epikure F205, by Fourier Tranform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The studied systems consist of a resin (A), based on a diglycidyl ether of bisphenol A and a hardener (B) based on the Isophorodiamine (IPDA) a cycloaliphatic diamine. These systems are used for the building and civil engineering industries, e.g. flooring compounds, adhesives, mortars and grouts. FTIR spectroscopy was employed to investigate the isothermal curing kinetics at 30, 50 or 70°C and DSC analysis to study the non-isothermal curing kinetics at different heating rates 2.5, 5, 10 and 20°C/min, from 20 to 300°C. A kinetic model was employed to simulate the FTIR isothermal experimental data using two kinetic rate constants and incorporating also diffusion control at high degrees of conversion. Finally, the variation of the effective activation energy with the extent of curing was estimated using isoconversional analysis of non-isothermal DSC data.  相似文献   

    20.
    The purpose of this investigation is to calculate the kinetic parameters and the kinetic model for the studied process. The results are further used to predict the system’s behaviour in various circumstances. A kinetic study regarding the ketoprofen—involving active substance’s thermal decomposition—was performed under isothermal conditions and in a nitrogen atmosphere, for the temperature steps: 260; 265; 270; 275; and 280 °C. The thermogravimetry/derivative thermogravimetry data were processed by three differential methods: isothermal–isoconversional, Friedman’s isothermal–isoconversional, and isothermal model-fittings. The obtained results are in good accordance with those obtained under non-isothermal conditions of a previous study, and confirm the necessity for the kinetic parameters to be determined, under different thermal conditions, by the adequate calculation methods.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号