首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by a Fourier transform. The physical examples discussed here are the standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow for an arbitrary choice of metric for the outcome distance, and the choice of an exponent distinguishing, e.g., absolute and root mean square deviations. The emphasis of this article is on developing a unified treatment, in which one observable takes on values in an arbitrary locally compact Abelian group and the other in the dual group. In all cases, the phase space symmetry implies the equality of measurement and preparation uncertainty bounds. There is also a straightforward method for determining the optimal bounds.  相似文献   

2.
In this note we first set up an analogy between spin and vorticity of a perfect 2d-fluid flow, based on the complex polynomial (i.e. Borel-Weil) realization of the irreducible unitary representations of SU(2), and looking at the Madelung-Bohm velocity attached to the ensuing spin wave functions. We also show that, in the framework of finite dimensional geometric quantum mechanics, the Schrödinger velocity field on projective Hilbert space is divergence-free (being Killing with respect to the Fubini-Study metric) and fulfils the stationary Euler equation, with pressure proportional to the Hamiltonian uncertainty (squared). We explicitly determine the critical points of the pressure of this “Schrödinger fluid”, together with its vorticity, which turns out to depend on the spacings of the energy levels. These results follow from hydrodynamical properties of Killing vector fields valid in any (finite dimensional) Riemannian manifold, of possible independent interest.  相似文献   

3.
A geometric approach to quantum mechanics with unitary evolution and non-unitary collapse processes is developed. In this approach the Schrödinger evolution of a quantum system is a geodesic motion on the space of states of the system furnished with an appropriate Riemannian metric. The measuring device is modeled by a perturbation of the metric. The process of measurement is identified with a geodesic motion of state of the system in the perturbed metric. Under the assumption of random fluctuations of the perturbed metric, the Born rule for probabilities of collapse is derived. The approach is applied to a two-level quantum system to obtain a simple geometric interpretation of quantum commutators, the uncertainty principle and Planck’s constant. In light of this, a lucid analysis of the double-slit experiment with collapse and an experiment on a pair of entangled particles is presented.  相似文献   

4.
We propose a self-consistent theoretical framework for a wide class of physical systems characterized by a finite space of states which allows us, within several mathematical virtues, to construct a discrete version of the Weyl–Wigner–Moyal (WWM) formalism for finite-dimensional discrete phase spaces with toroidal topology. As a first and important application from this ab initio approach, we initially investigate the Robertson–Schrödinger (RS) uncertainty principle related to the discrete coordinate and momentum operators, as well as its implications for physical systems with periodic boundary conditions. The second interesting application is associated with a particular uncertainty principle inherent to the unitary operators, which is based on the Wiener–Khinchin theorem for signal processing. Furthermore, we also establish a modified discrete version for the well-known Heisenberg–Kennard–Robertson (HKR) uncertainty principle, which exhibits additional terms (or corrections) that resemble the generalized uncertainty principle (GUP) into the context of quantum gravity. The results obtained from this new algebraic approach touch on some fundamental questions inherent to quantum mechanics and certainly represent an object of future investigations in physics.  相似文献   

5.
We investigate consequences of allowing the Hilbert space of a quantum system to have a time-dependent metric. For a given possibly nonstationary quantum system, we show that the requirement of having a unitary Schrödinger time-evolution identifies the metric with a positive-definite (Ermakov–Lewis) dynamical invariant of the system. Therefore the geometric phases are determined by the metric. We construct a unitary map relating a given time-independent Hilbert space to the time-dependent Hilbert space defined by a positive-definite dynamical invariant. This map defines a transformation that changes the metric of the Hilbert space but leaves the Hamiltonian of the system invariant. We propose to identify this phenomenon with a quantum mechanical analogue of the principle of general covariance of general relativity. We comment on the implications of this principle for geometrically equivalent quantum systems and investigate the underlying symmetry group.  相似文献   

6.
Heisenberg's uncertainty principle is usually taken to express a limitation of operational possibilities imposed by quantum mechanics. Here we demonstrate that the full content of this principle also includes its positive role as a condition ensuring that mutually exclusive experimental options can be reconciled if an appropriate trade-off is accepted. The uncertainty principle is shown to appear in three manifestations, in the form of uncertainty relations: for the widths of the position and momentum distributions in any quantum state; for the inaccuracies of any joint measurement of these quantities; and for the inaccuracy of a measurement of one of the quantities and the ensuing disturbance in the distribution of the other quantity. Whilst conceptually distinct, these three kinds of uncertainty relations are shown to be closely related formally. Finally, we survey models and experimental implementations of joint measurements of position and momentum and comment briefly on the status of experimental tests of the uncertainty principle.  相似文献   

7.
Some properties of representations of local current operators are studied. The currents are assumed to be conserved and to have charge densities transforming like the regular representation of any internal symmetry group G containing the isospin SU2. The representation space is the “physical” Hilbert space, having a positive definite metric and carrying time-like positive-energy representations of the Poincaré group. The main results are that in every irreducible representation space, (A) arbitrarily large irreducible representations of G must occur, and (B) the mass spectrum is unbounded and continuous from some point onwards if it is not strictly degenerate. These results have strong implications for current algebra saturation schemes, both at finite and infinite momentum.  相似文献   

8.
9.
This paper presents a comprehensive perspective of the metric of quantum states with a focus on the geometry in the background independent quantum mechanics. We also explore the possibilities of geometrical formulations of quantum mechanics beyond the quantum state space and Kähler manifold. The metric of quantum states in the classical configuration space with the pseudo-Riemannian signature and its possible applications are explored. On contrary to the common perception that a metric for quantum state can yield a natural metric in the configuration space when the limit ?→0, we obtain the metric of quantum states in the configuration space without imposing the limiting condition ?→0. Here Planck’s constant ? is absorbed in the quantity like Bohr radii \(\frac{1}{2mZ\alpha}\sim a_{0}\). While exploring the metric structures associated with Hydrogen like atom, we witness another interesting finding that the invariant lengths appear in the multiple of Bohr’s radii as: ds 2=a 0 2 (? Ψ)2.  相似文献   

10.
11.
We discuss the role of compact symmetry groups, G, in the classification of gapped ground state phases of quantum spin systems. We consider two representations of G on infinite subsystems. First, in arbitrary dimensions, we show that the ground state spaces of models within the same G-symmetric phase carry equivalent representations of the group for each finite or infinite sublattice on which they can be defined and on which they remain gapped. This includes infinite systems with boundaries or with non-trivial topologies. Second, for two classes of one-dimensional models, by two different methods, for G=SU(2) in one, and G?SU(d), in the other we construct explicitly an ‘excess spin’ operator that implements rotations of half of the infinite chain on the GNS Hilbert space of the ground state of the full chain. Since this operator is constructed as the limit of a sequence of observables, the representation itself is, in principle, experimentally observable. We claim that the corresponding unitary representation of G is closely related to the representation found at the boundary of half-infinite chains. We conclude with determining the precise relation between the two representations for the class of frustration-free models with matrix product ground states.  相似文献   

12.
This paper is about a novel mathematical framework to model transport (of, e.g., fluid or gas) through networks of capillaries. This framework takes into account the tree structure of the networks of capillaries. (Roughly speaking, we use the tree-like system of coordinates.) As is well known, tree-geometry can be topologically described as the geometry of an ultrametric space, i.e., a metric space in which the metric satisfies the strong triangle inequality: in each triangle, the third side is less than or equal to the maximum of two other sides. Thus transport (e.g., of oil or emulsion of oil and water in porous media, or blood and air in biological organisms) through networks of capillaries can be mathematically modelled as ultrametric diffusion. Such modelling was performed in a series of recently published papers of the authors. However, the process of transport through capillaries can be only approximately described by the linear diffusion, because the concentration of, e.g., oil droplets, in a capillary can essentially modify the dynamics. Therefore nonlinear dynamical equations provide a more adequate model of transport in a network of capillaries. We consider a nonlinear ultrametric diffusion equation with quadratic nonlinearity - to model transport in such a network. Here, as in the linear case, we apply the theory of ultrametric wavelets. The paper also contains a simple introduction to theory of ultrametric spaces and analysis on them.  相似文献   

13.
14.
The Heisenberg uncertainty principle describes a basic restriction on an observer's ability of precisely predicting the measurement of a pair of noncommuting observables, and virtually is at the core of quantum mechanics. Herein, the aim is to study the entropic uncertainty relation (EUR) under the background of a Schwarzschild black hole and its control. Explicitly, dynamical features of the measuring uncertainty via entropy are developed in a practical model where a stationary particle interacts with its surrounding environment while another particle—serving as a quantum memory reservoir—undergoes free fall in the vicinity of the event horizon of the Schwarzschild space‐time. It shows higher Hawking temperatures would give rise to an inflation of the entropic uncertainty on the measured particle. This is suggestive of the fact the measurement uncertainty is strongly correlated with degree of mixing present in the evolving particles. Additionally, based on information flow theory, a physical interpretation for the observed dynamical behaviors related with the entropic uncertainty in such a genuine scenario is provided. Finally, an efficient strategy is proposed to reduce the uncertainty by non‐tracing‐preserved operations. Therefore, our explorations may improve the understanding of the dynamic entropic uncertainty in a curved space‐time, and illustrate predictions of quantum measurements in relativistic quantum information sciences.  相似文献   

15.
In previously exhibited hidden variable models of quantum state preparation and measurement, the number of continuous hidden variables describing the actual state of single realizations is never smaller than the quantum state manifold dimension. We introduce a simple model for a qubit whose hidden variable space is one-dimensional, i.e., smaller than the two-dimensional Bloch sphere. The hidden variable probability distributions associated with quantum states satisfy reasonable criteria of regularity. Possible generalizations of this shrinking to an N-dimensional Hilbert space are discussed.  相似文献   

16.
We show that the quantum Heisenberg groupH q (1) and its *-Hopf algebra structure can be obtained by means of contraction from quantumSU q (2) group. Its dual Hopf algebra is the quantum Heisenberg algebraU q (h(1)). We derive left and right regular representations forU q (h(1)) as acting on its dualH q (1). Imposing conditions on the right representation, the left representation is reduced to an irreducible holomorphic representation with an associated quantum coherent state. Realized in the Bargmann-Hilbert space of analytic functions the unitarity of regular representation is also shown. By duality, left and right regular representations for quantum Heisenberg group with the quantum Heisenberg algebra as representation module are also constructed. As before reduction of group left representations leads to finite dimensional irreducible ones for which the intertwinning operator is also investigated.  相似文献   

17.
18.
This is the fourth in a series of papers on developing a formulation of quantum mechanics in non-inertial reference frames. This formulation is grounded in a class of unitary cocycle representations of what we have called the Galilean line group, the generalization of the Galilei group to include transformations amongst non-inertial reference frames. These representations show that in quantum mechanics, just as the case in classical mechanics, the transformations to accelerating reference frames give rise to fictitious forces. In previous work, we have shown that there exist representations of the Galilean line group that uphold the non-relativistic equivalence principle as well as representations that violate the equivalence principle. In these previous studies, the focus was on linear accelerations. In this paper, we undertake an extension of the formulation to include rotational accelerations. We show that the incorporation of rotational accelerations requires a class of loop prolongations of the Galilean line group and their unitary cocycle representations. We recover the centrifugal and Coriolis force effects from these loop representations. Loops are more general than groups in that their multiplication law need not be associative. Hence, our broad theoretical claim is that a Galilean quantum theory that holds in arbitrary non-inertial reference frames requires going beyond groups and group representations, the well-established framework for implementing symmetry transformations in quantum mechanics.  相似文献   

19.
In this contribution the search for effects from possible theories of quantum gravity is reviewed. In order to distinguish quantum gravity effects from standard effects, first the standard theory and the principles it is based on has to be described. We show that standard physics (the Maxwell equations, the Dirac equation, gravity as a metric theory) is completely based on the Einstein equivalence principle, EEP (for obtaining the Einstein equations, some more requirements are needed). As a consequence, all deviations from the EEP are related to new effects originating from quantum gravity. The variety and structure of these effects is described and the expected magnitude of the effects and a corresponding strategy for the search for these effects are discussed. We stress the advantages of space for performing experiments searching for quantum gravity effects. At the end we make some remarks concerning the daily-life applications of high-precision techniques. PACS 04.80.Cc; 03.30.+p; 06.20.-f; 04.60.-m  相似文献   

20.
A lattice analogue of the Kac-Moody algebra is constructed. It is shown that the generators of the quantum algebra with the deformation parameterq=exp(iπ/k+h) can be constructed in terms of generators of the lattice Kac-Moody algebra (LKM) with the central chargek. It appears that there exists a natural correspondence between representations of the LKM algebra and the finite dimensional quantum group. The tensor product for representations of the LKM algebra and the finite dimensional quantum algebra is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号