首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four complexes of the nuclear structure NiII–ZnII were prepared with bis-N,N′-(salicylidene)-1,3-propanediamine (LH2), bis-N,N′-(salicylidene)-2,2′-dimethyl-1,3-propanediamine (LDMH2) and the reduced derivatives of these Schiff bases, bis-N,N′-(2-hydroxybenzyl)-1,3-propanediamine (LHH2), bis-N,N′-(2-hydroxybenzyl)-2,2′-dimethyl-1,3-propanediamine (LDMHH2). The complexes were characterized using IR spectroscopy, elemental analysis and thermogravimetric methods. The stoichiometry of the complex molecules were found to be NiL·ZnCl2·(DMF)2, NiLDM·ZnCl2·(DMF)2, NiLH·ZnCl2·(DMF)2 and NiLDMH·ZnCl2·(DMF)2. The molecular models of the complexes prepared with the reduced Schiff bases were determined according to the X-ray diffraction method. It is seen that in these complexes Ni(II) is in octahedral and Zn(II) is in tetrahedral coordination sphere. Ni(II) ion is coordinated between two nitrogen and two oxygen donors of the ligand and oxygen donors of the two DMF molecules. Zn(II) ion on the other hand is coordinated between two oxygen of the organic ligand forming two μ bonds. It also coordinates two Cl ions. The thermogravimetric analysis showed that the complex NiLDMH·ZnCl2·(DMF)2 containing methyl groups is more stable than the other complex NiLH·ZnCl2·(DMF)2 containing reduced Schiff base. The coordinative DMF molecules in NiLDMH·ZnCl2·(DMF)2 were thermally cleaved. However, the cleavage of DMF molecules NiLH·ZnCl2·(DMF)2 resulted in the thermal degradation of the complex. In order to explain the TG data of the ligands were titrated in non-aqueous medium and their basicity strengths were determined. It was found that the basicity of the ligands containing two methyl groups were stronger. It is understood that the two methyl groups increase the negative charge density on nitrogen causing an increase in complex stability.  相似文献   

2.
ILHAN  Salih TEMEL  Hamdi KILIC  Ahmet 《中国化学》2007,25(10):1547-1550
Six new macrocyclic complexes were synthesized by a template reaction of 1,4-bis(2-formylphenoxy)butane with diamines and Cu(NO3)2·3H2O and their structures were proposed on the basis of elemental analysis, FT-IR, UV-Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra. The metal to ligand molar ratios of the Cu(Ⅱ) complexes were found to be 1 : 1. The Cu(Ⅱ) complexes are 1 : 2 electrolytes as shown by their molar conductivities (∧m) in DMF at 10^-3 mol·L^-1. Due to the existence of free ions the Cu(Ⅱ) complexes are electrically conductive. Their configurations were proposed to be probably distorted octahedral.  相似文献   

3.
A 3-D metal-organic framework [Cd3(L)2(DMF)2]?·?2H2O?·?2DMF (1) (H3L?=?2-(dimethylcarbamoyl)biphenyl-5,2′,5′-tricarboxylic acid, DMF?=?N,N-dimethylformamide) with trinuclear Cd(II) units has been prepared. Complex 1 is a (3,?6)-connected (42?·?6)2(44?·?62?·?88?·?10) coordination net, which results from the solvothermal in situ formation of a new asymmetric ligand, 2-(dimethylcarbamoyl)biphenyl-5,2′,5′-tricarboxylic acid (H3L), through amidation of biphenyl-2,5,2′,5′-tetracarboxylic acid (H4bptc). Additionally, the luminescence of 1 has been investigated.  相似文献   

4.
A series of La(III) and Th(IV) complexes have been synthesized by template condensation of 2,6-diformyl-4-methylphenol, bis-(4-amino-5-mercapto-1,2,4-triazol-3-yl)alkanes and La(NO3)3 ·?6H2O/Th(NO3)4 ·?5H2O in 2 : 2 : 1 molar ratio in ethanol. These complexes were characterized by elemental analyses, magnetic susceptibility, molar conductance, spectral (IR, UV–Vis, 1H-NMR, FAB-mass), thermal, fluorescence and solid state d.c. electrical conductivity studies. The complexes are insoluble in water but soluble in DMF and DMSO. The observed molar conductance values indicate non electrolytes. Elemental analyses suggest 1 : 1 stoichiometry, [La(LI–IV)(NO3)(H2O)2] ·?3H2O and [Th(LI–IV)(NO3)2(H2O)2] ·?3H2O. Spectroscopic studies indicate that coordination occurs through phenolic oxygen after deprotonation, nitrogen of azomethine group and bridging bidentate nitrates. The solid state d.c. electrical conductivity indicates semiconducting nature. All the Schiff bases and their La(III) and Th(IV) complexes were evaluated for biological properties; some compounds show promising results.  相似文献   

5.
{[Zn2(tdba)2(phen)2(H2O)2]?·?2H2O?·?2DMF} n (1) and [Zn(tdba)(bpy)] n (2) (H2tdba?=?2,2′-thiodibenzoic acid, phen?=?1,10-phenanthroline, bpy?=?2,2′-bipyridine, DMF?=?dimethylformamide) were hydrothermally synthesized, and characterized by single-crystal X-ray diffraction analysis, FT-IR, and elemental analysis. The obtained complexes exhibit different structures. Compound 1 is 0-D with tdba connecting two Zn ions in a μ 1η 1/μ 1η 1 coordination forming a dinuclear molecule. Each molecule is further connected with neighbors via hydrogen-bonding and π?···?π interactions. Compound 2 displays a 1-D structure in which Zn2+ centers are connected via tdba anions into 1-D chains propagating along the a-axis; these chains are further packed via π?···?π interactions. In addition, photoluminescence for 1 and 2 has been investigated.  相似文献   

6.
Two new complexes, namely, [Cd2(L1)2(NCS)4(DMF)2] · 4H2O (I) and {[Zn3(L2)4(SO4)3(H2O)8] · 3DMF · 6H2O} n (II) have been synthesized through self-assembly of Cd(II) or Zn(II) salts with ferrocenyl ligands bearing pyrazolyl pyridine substituents. The two compounds were characterized by IR spectra, element analysis, X-ray powder diffraction, single-crystal X-ray diffraction (СIF files CCDC nos. 949526 (I), 949527 (II)), and thermogravimetric analysis. Complex I crystallizes in the monocline space group P21/c and exhibits a discrete dinuclear structure. The adjacent dinuclear molecules are packed into a 1D linear chain through the hydrogen-bond interactions. Complex II is a neutral one-dimensional infinite zigzag coordination chain. The 3D packing diagram of II contains two types of voids and the solvated DMF and water molecules filled them and stabilized by the hydrogen bonds. In addition, the redox properties of both complexes I and II have also been investigated.  相似文献   

7.
In this study, a new bidentate Schiff base ligand (L) entitled as N,N’-bis(dimethylaminocinnamaldehyde)-2,2-dimethyl-1,3-propanediamine and its mercury complexes were synthesized. The Schiff base ligand and its complexes were characterized using FT-IR, 1H-, 13C-NMR spectroscopy, molar conductivity and electronic spectral study. Regarding physical and spectral data, the general formula for the complexes was suggested as HgLX2 (L = Schiff base ligand and X = Cl?, Br?, I?, SCN?, N3 ?). For structural identification of these complexes, crystal structure of mercury iodide complex was analyzed as typical one. In the structure of this complex, Hg ion is surrounded by 2 iodide ions and 2 N atoms from the Schiff base ligand to form a four-coordinated mercury complex in triclinic system with space group of P 1. Angular index (τ 4) value was evaluated equal to 0.85, so the geometry around the mercury ion in this complex can be described as trigonal pyramid. A layered supramolecular structure for HgLI2 complex is stabilized by C–H···I and C–H···π interactions in solid state. DFT study on the ligand and its complexes was also carried out, and then some calculated and experimental structural parameters of HgLI2 were compared. Thermal behaviors of the titled compounds were investigated by thermogravimetric analyses. Furthermore, biological properties of the ligand and its complexes were examined against some Gram-negative and Gram-positive bacteria and also against 2 fungi. Finally, the interaction of the ligand and its complexes with DNA was investigated by electrophoresis method.  相似文献   

8.
The formation of complexes at pH 4.7 of the Hg(II) with five monothiosemicarbazone and two dithiosemicarbazone has been studied. The mercury(II) reacts with monothiosemicarbazones of salicylaldehyde (λmax = 363 nm, E = 1.69 × 104liters · mol?1cm?1), pi-colinadehyde (λmax = 363 nm, E = 2.38 × 104liters · mol?1cm?1), 6-methyl-picolinaldehyde (λmax = 363 nm, E = 2.28 × 104liters · mol?1cm?1), di-2-pyridylketone (λmax = 380 nm, E = 2.08 × 104liters · mol?1cm?1), and o-naphthoquinone (λmax = 540 nm, E = 1.03 × 104liters · mol?1cm?1) and with dithiosemicarbazones of 1,4-dihydroxyphthalimide (λmax = 430 nm, E = 2.56 × 104liters · mol?1cm?1) and dipyridylglyoxal (λmax = 363 nm, E = 2.37 × 104liters · mol?1cm?1). A critical comparison of the stoichiometry and apparent stability constant of complexes with mono- and dithiosemicarbazones is given.  相似文献   

9.
Two vic-dioxime ligands (LxH2) containing morpholine group have been synthesized from 4-[2-(dimethylaminoethyl)] morpholine with anti-phenylchloroglyoxime or anti-monochloroglyoxime in absolute THF at -15 ℃. Reaction of two vic-dioxime ligands with MCl2·nH2O (M: Ni, Cu or Co and n=2 or 6) salts in 1 : 2 molar ratio afforded metal complexes of type [M(LxH)2] or [M(LxH)2·2H2O]. All of metal complexes are non-electrolytes as shown by their molar conductivities (Am) in DMF (dimethyl formamide) at 10^-3 mol·L^-1. Structures of the ligands and metal complexes have been solved by elemental analyses, FT-IR, UV-Vis, ^1H NMR and ^13C NMR, magnetic susceptibility measurements, molar conductivity measurements. Furthermore, redox properties of the metal complexes were investigated by cyclic voltammetry.  相似文献   

10.
A novel 1D chain-like coordination polymer, {[Pb(CDCA)2(DMF)] · DMF · 2H2O]} n (I) (HCDCA = chenodeoxycholic acid, DMF = dimethyl formamide), has been synthesized by hydrothermal method and characterized by single crystal X-ray diffraction, IR spectroscopy, and elemental analysis (CIF file CCDC no. 996098). X-ray diffraction analyses indicated that I displays distorted octahedral metal centers with secondary building units [Pb(CDCA)2(DMF)] bridged by a pair of μ2-COO?-bridges. In the crystal, interchain O-H?O hydrogen bonds are present and assemble the neighboring 1D chain into a (4,4) sql type three-dimensional (3D) supramolecular topological network.  相似文献   

11.
Six macrocyclic complexes, were synthesized by reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane and various amines and their copper(II) perchlorate complexes were synthesized by template effect reaction of 1,4-bis(2-carboxyaldehyde phenoxy)butane, Cu(ClO4)2?·?6H2O and amines. The metal-to-ligand ratios were found to be 1?:?1. Cu(II) metal complexes are 1?:?2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3?M. The Cu(II) complexes are proposed to be square planar based on elemental analysis, FT–IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements, and mass spectra.  相似文献   

12.
《Polyhedron》2001,20(9-10):1029-1035
The reaction of 3-phenyl-5-(2-pyridyl)pyrazole (HL0) and 3-phenyl-5-(6-methyl-(2-pyridyl))pyrazole (HL1) with nickel(II) salts produces mononuclear coordination compounds. The new complexes have been characterised by elemental analyses, conductivity measurements and infrared and electronic spectroscopies.Two different forms of mononuclear nickel(II) complexes have been prepared and structurally characterised by X-ray crystallography: [Ni(HL0)2Cl(H2O)][Ni(HL0)2(H2O)2]Cl3·CH3OH·H2O and [Ni(HL1)2(H2O)2]Br2·2.5DMF. In the cationic complexes, the coordination of the Ni(II) is octahedral with two bidentate HL0 or HL1 neutral ligands in a cis disposition. The degree of distortion from regular octahedral geometry is compared to closely related structures. In the solid state, cations and anions are bonded by hydrogen bonding.  相似文献   

13.
The effect of In impurity on the crystallization kinetics and the changes taking place in the structure of (Se7Te3) have been studied by DTA measurements at different heating rates (α=5 deg·min?1, 10 deg·min?1, 15 deg·min?1 and 20 deg·min?1). From the heating rate dependence of the values ofT g,T c andT p, the glass transition activation energy (E t) and the crystallization activation energy (E c) have been obtained for different compositions of (Se7Te3)100?xInx (0≤×≤20). The variation of viscosity as a function of temperature has been evaluated using Vogel-Tamman-Fulcher equation. The crystallization data are analysed using Kissinger's and Matusita's approach for nonisothermic crystallization. It has been found that for samples containing In=0, 10, 15, 20 at%, three dimensional nucleation is predominant whereas for samples containing In=5 at%, two dimensional nucleation is the dominant mechanism. The compositional dependence ofT g and crystallization kinetics are discussed in terms of the modification of the structure of the Se?Te system.  相似文献   

14.
The products of UV photolysis of ternary Ar?CH4(CD4)?F2 mixtures (1:c:c 0,c, c 0=0.001–0.01) at 13–16 K were identified by ESR and FTIR spectroscopy. These products are?CH3 (?CD3) radicals of typesI andII and molecular CH3F?HF complexes. The latter were characterized by the IR bands of the stretching C?F (1003 cm?1) and H?F (3774 cm?1) vibrations. The ESR spectra of radicalsI are asymmetric. The anisotropy of theg-factor (Δg~10?3) of radicalI indicates that the structure of the radicals is nonplanar. The ESR spectrum of the typeII radical is identical to that of matrix-isolated?CH3 (?CD3) radicals with the planar structure (Δg<5·10?5). Under the experimental conditions, the amount of complexes formed in the photolysis is equal to 0.022·c. When the photolysis is ceased, radicalI disappears after ≈103 s and radicalII is stabilized. The limiting concentrations of the stabilized?CH3 and?CD3 radicals are equal to 2·10?2·c and 2·10?3·c, respectively. A mechanism of the formation of the products is suggested. It is based on the assumption that both matrix-isolated CH4 and F2 and their heterodimers CH4?F2 are present in the samples and it takes into account the long-range migration of translationally excited flourine atoms. The CH3F?HF complexes and radicalsI are generated by the photolysis of the CH4?F2 heterodimers. The decay of radicalsI is caused by geminate recombination of proximate F...CH3 pairs. RadicalsII are formed in the reaction of translationally excited fluorine atoms with isolated CH4 (CD4) molecules.  相似文献   

15.
A dimeric dichloro-bridged copper(II) complex [Cu2(pdon)2Cl4] · 2DMF (1) and two mononuclear copper(II) complexes [Cu(pdon)(DMSO)Cl2] · DMSO · H2O (2) and [Cu(pdon)3] · (ClO4)2 · 2.25CH3CN · 6H2O (3) (pdon = 1,10-phenanthroline-5,6-dione) have been synthesized and characterized. Variable-temperature magnetic susceptibility studies indicate the existence of weak anti-ferromagnetic coupling in the binuclear complex. The interaction of these complexes with CT-DNA (calf thymus DNA) has been studied using absorption and emission spectral methods. The apparent binding constants (K app) for 1, 2 and 3 are 5.20 × 105, 2.68 × 105 and 7.05 × 105 M?1, respectively, showing moderate intercalative binding modes. All of these complexes cleave plasmid DNA to nicked DNA in a sequential manner as the concentration or reaction time is increased. The cleavage mechanism between the complex and plasmid DNA is likely to involve singlet oxygen 1O2 and ?OH as reactive oxygen species.  相似文献   

16.
The following copper(I) and silver(I) complexes of 2-amino-1,3,4-thiadiazole (atz) and 2-ethylamino-1,3,4-thiadiazole (eatz) have been prepared and studied by conductometric, IR and Raman methods: CuXL(X = Cl, Br, I; L = atz, eatz), CuXL3(X = ClO4, NO3; L = atz, eatz), AgClO4·1.5atz·1/3 EtOH, AgNO3·2.5atz, AgClO4·3eatz, AgNO3·eatz. The ligands are bonded through the amine nitrogen atoms with ν(MN) bands in the 520–410 cm?1 region. The CuXL complexes have a trigonal (N, 2Xb) coordination with a probable weaker axial interaction. The CuXL3 and AgCIO4·3eatz complexes probably have a trigonal pyramidal (3N,O) coordination. In the atz complexes of silver perchlorate and nitrate some ligand molecules are bridging. The AgNO3·2.5atz complex is likely to have a dimeric structure with tetrahedral coordination of the silver ion.  相似文献   

17.
Four macrocyclic Schiff-base cobalt complexes, [CoL1][NO3]2 · 3H2O, [CoL2][NO3]2 · 4H2O, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O, were synthesized by reaction of salicylaldehyde derivatives with 1,4-bis(3-aminopropoxy)butane or (±)-trans-1,2-diaminocyclohexane and Co(NO3)2 · 6H2O by template effect in methanol. The metals to ligand ratio of the complexes were found to be 1:1. The Co(II) complexes are proposed to be tetrahedral geometry. The macrocyclic Co(II) complexes are 1:2 electrolytes as shown by their molar conductivities (ΛM) in DMF (dimethyl formamide) at 10?3 M. The structure of Co(II) complexes is proposed from elemental analysis, Ft-IR, UV–visible spectra, magnetic susceptibility, molar conductivity measurements and mass spectra. Electrochemical and thin-layer spectroelectrochemical studies of the complexes were comparatively studied in the same experimental conditions. The electrochemical results revealed that all complexes displayed irreversible one reduction processes and their cathodic peak potential values (E pc) were observed in around of ?1.14 to 0.95 V. It was also seen that [CoL1][NO3]2 · 3H2O and [CoL2][NO3]2 · 4H2O exhibited one cathodic wave without corresponding anodic wave but, [CoL3][NO3]2 · 4H2O and [CoL4][NO3]2 · 2H2O showed one cathodic wave with corresponding anodic wave, probably due to the presence of different ligand nature even if the complexes have the same N2O2 donor set. In view of spectroelectrochemical studies [CoL3][NO3]2 · 4H2O showed distinctive spectral changes in which the intensity of the band (λ = at 316 nm, assigned to n → π* transitions) decreased and a new broad band in a low intensity about 391 nm appeared as a result of the reduction process based on the cobalt center in the complex.  相似文献   

18.
Solid complexes of boron decachloro-o-carborane and boron decachloro-m-carborane (B10Cl10C2H2) with some oxygen and nitrogen bases have been investigated by infrared and Raman spectroscopy. Complexes containing CH · · O hydrogen bonds are characterized by a relative CH stretching frequency shift up to 12% and a halfwidth of the νCH band up to 220 cm?1. CH · · N hydrogen bonds, with trimethylamine for example, are stronger with a relative shift of about 18% and ν12 of about 500 cm?1. Triethylamine complexes, however, form a NH+ · · C? proton transfer hydrogen bond while pyridine can give either CH · · N or C? · · +HN hydrogen-bonded adducts depending on the solvent and temperature. The CH · · N?c? · · +HN equilibrium appears to be shifted towards ion-pair formation at considerably smaller enthalpy values compared to the OH · · N?O? · · +HN system. CH and NH stretching frequencies are correlated with the acidity of the donor and the basicity of acceptor molecules.  相似文献   

19.
Two coordination complexes, [Co2L2(4,4′-bpy)2(H2O)4]?·?6H2O (1) and [CoL(4,4′-bpy)] (2) (H2L?=?4,6-bis(4-methylbenzoyl)isophthalic acid and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized with the same starting materials under conventional and hydrothermal condition, respectively. Their structures have been characterized by X-ray diffraction, elemental analysis, IR spectra, and thermogravimetric analysis. Complex 1 features a 2-D sheet structure (space group C2/c) with (4,4) grid units. The non-covalent interactions (O–H?·?·?·?O, C–H?·?·?·?π, and weak π??·?·?·?π interactions) extend 1 into a 3-D supramolecular network. Complex 2 displays a (3,5)-connected network (space group P 1) with a (42?·?6)(42?·?68) topology.  相似文献   

20.
Two new mono- and dinuclear Cu(II) complexes, namely [CuL1]·0.5H2O (1) and [(Cu2(L2)2)(DMF)]·0.5DMF (2) (H2L1 = 1,2-bis{[(Z)-(3-methyl-5-oxo-1-phenyl-1H-pyrazolidin-4(4H)-yl)(phenyl)]methylene-aminooxy}ethane; H2L2 = 1,3-bis{[(Z)-(3-methyl-5-oxo-1-phenyl-1H-pyrazolidin-4(4H)-yl)(phenyl)] methyleneaminooxy}propane), have been synthesized and characterized by X-ray crystallography. The unit cell of complex 1 contains two crystallographically independent but chemically identical [CuL1] molecules and one crystalline water molecule, showing a slightly distorted square-planar coordination geometry and forming a wave-like pattern running along the a-axis via hydrogen bonding and π···π stacking interactions. Complex 2 has a dinuclear structure, comprising two Cu(II) atoms, two completely deprotonated phenolate bisoxime (L2)2− moieties (in the form of enol), and both coordinated and hemi-crystalline DMF molecules. Complex 2 has square-planar and square-pyramidal geometries around the two copper centers, whose basic coordination planes are almost perpendicular and form an infinite three-dimensional supramolecular network structure involving intermolecular C–H···N, C–H···O, and C–H···π(Ph) hydrogen bonding and π···π stacking interactions of neighboring pyrazole rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号