首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The position and the intensity of electronic bands are influenced by an electric field. Pronounced changes in the position of absorption bands are mainly due to the dipole moment of the molecule in the ground state and the change in the dipole moment during the excitation process, and pronounced changes in intensity are due to the field dependence of the transition moment, which can be described by the transition polarizability. The effect of an external electric field on the optical absorption (electrochromism) of suitable molecules can be used to determine the dipole moment in the ground state, the change in dipole moment during the excitation process, the direction of the transition moment of the electronic band, and certain components of the transition polarizability tensor. These data largely determine the strong solvatochromism (solvent-dependence of the position and intensity of electronic bands), which is observed in particular with molecules having large dipole moments. Smaller contributions to solvatochromism result from dispersion interactions, which predominate in the case of nonpolar molecules. The models developed have been experimentally checked and verified by a combination of electro-optical absorption measurements (influence of an external electric field on absorption) and investigation of the solvent-dependence of the electronic bands.  相似文献   

2.
Molecular beam techniques for study of collisional and spectroscopic processes have recently been enhanced by use of static electric or magnetic fields to orient or align molecules with permanent dipole moments. A more general method is now in prospect, applicable both to alignment and to spatial trapping of molecules. This exploits the anisotropic interaction of the electric field vector of intense laser radiation with the dipole moment induced in a polarizable molecule by the laser field. The interaction creates directional superpositions of field-free states that correspond to oblate spheroidal wavefunctions, with eigenenergies that decrease with increasing field strength. We suggest that this polarizability interaction produces the marked alignment found in laser-induced dissociative ionization of CO by the Saclay group. We also present calculations illustrating the feasibility of spattal trapping. In combination with supermirror focussing and buffer-gas cooling, an intense infrared laser can typically confine molecules for long-times (-hours) within a small (-picoliter) and cold (?1°K) “pocket of light.”  相似文献   

3.
The electrostatic potential and the intensity of the electric field above the isolated layer of the phyllosilicate mineral talc (layer group symmetry C2/m) were computed using the semiempirical INDO /2 method. The electrostatic potential Vc and the intensity of electric field (OVERBAR)Ec, above the surface of semi-infinite crystal were obtained as the sum of the contributions of the infinite number of individual layers. The interaction energy Uint between a noble gas atom and the talc crystal was computed as (a) a pure Lennard-Jones energy ULJ and (b) the sum of ULJ and interaction energy with induced dipole moment: Uind = α|(OVERBAR)E|2, where α is the dipole polarizability of the noble gas atom. The one-particle configurational integral was calculated within the classical mechanics limit. Both the free and adsorbed gas phases were assumed to be ideal. The obtained results demonstrate that in the case of uncharged and nonpolar adsorbate and an uncharged surface the electrostatic part of the interaction energy should be included in the total interaction energy. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
5.
Abstract

Chiral liquid crystals exhibit molecular optical activity in the isotropic phase. We have studied the evolution of the optical activity as a function of an applied electric field on a 76·2 μm film of the chiral liquid crystal W7, which exhibits an isotropic–smectic A transition at approximately 40°C. We measured the optical activity by recording the rotation of the plane of polarization of an incident linearly polarized ray of light, provided by a He–Ne laser. The applied biasing electric field is parallel to the direction of the incident beam. We find that at 41·0°C, the plane of polarization shifts from ?1·1° for an applied voltage of 30 V to a maximum of ?4·0° at 70 V. The absolute value of the signal decreases beyond this voltage. These shifts are in the direction of the smectic A phase and are in general larger than those observed as a function of temperature. Close to the isotropic–smectic A phase transition, molecules inside the liquid coalesce to form dynamic coherent groups, which have smectic nature. These groups are randomly oriented with respect to each other in the absence of an electric field. The application of an electric field causes the molecules within these groups to align along the direction of the field and to contribute coherently to the optical activity of the system. The way the molecules align with the field depends on the relative values of the polarizability α, which contributes to the alignment of the long axis of the molecule, and the dipole moment p, which contributes to the alignment of the short axis of the molecule. Our preliminary results and calculations suggest that for small fields, the electric field couples with the dipole moment p, whereas for fields in excess of 70 V, the field couples with the polarizability of the long axis of the molecule, causing a rotational reorientation of the molecules in the isotropic phase. The value of the field at which this reorientation occurs may be controlled by temperature.  相似文献   

6.
The polarizability anisotropies of homonuclear rare gas diatomic molecules, Ar(2), Kr(2), and Xe(2), are investigated by utilizing the interaction of the induced electric dipole moment with a nonresonant, nanosecond laser pulse. The degree of alignment, which depends on the depth of the interaction potential created by the intense laser field, is measured, and is found to increase in order of Ar(2), Kr(2), and Xe(2) at the same peak intensity. Compared with a reference I(2) molecule, Ar(2), Kr(2), and Xe(2) are found to have the polarizability anisotropies of 0.45 ± 0.13, 0.72 ± 0.13, and 1.23 ± 0.21 A?(3), respectively, where the uncertainties (one standard deviation) in the polarizability anisotropies are carefully evaluated on the basis of the laser intensity dependence of the degree of alignment. The obtained values are compared with recent theoretical calculations and are found to agree well within the experimental uncertainties.  相似文献   

7.
The molecular mechanisms of aqueous solvent penetration into a flat nanopore with hydrophobic structureless walls containing a Na+Cl? ion pair with nonfixed distance between ions is studied by computer simulations. A detailed many-body polycenter model of intermolecular interactions calibrated with respect to experimental data for the free energy of attachment of water vapor molecules and quantum-chemical calculations in clusters is used. The ion pair hydration results in its decomposition. Drawing the molecules into the gap between ions makes easier penetration of solvent and filling of the nanopore with electrolyte. The ion-pair dissociation is accompanied by dramatic changes in the chemical potential of molecules and electric properties of the whole system. The thermodynamic characteristics of decomposition are stable as regards variations in the pore width. The post-decomposition electric polarizability demonstrates strong anisotropy associated with the nanopore flatness.  相似文献   

8.
Infinite-dilution gas–liquid chromatographic activity coefficients at 393.15 K (with their thermal and athermal components) and derived excess partial molar Gibbs energies, enthalpies, and entropies have been determined for each of 33 solutes of different polarity on four stationary phases with cyano groups, using retention data taken from the literature. The strongest interactions predicted by the solvation model are the dipolarity/polarizability, the acidic solute–basic stationary phase interaction, and nonpolar cavity formation and dispersion. These interactions were compared with those evaluated from the solute activity coefficients; the effect of the solute connectivity index and dipole moment on nonpolar and polar interactions, respectively, is discussed. The dependence of the thermal activity coefficient on nonpolar interactions, and the influence of stationary phase polarity on the four solute–stationary phase interactions, were evaluated. The nonpolar interaction increases with increasing connectivity and with increasing athermal activity coefficient. The dipolarity/polarizability interaction increases with increasing solute dipole moment. Finally, polar interactions increase with increasing stationary phase polarity whereas the nonpolar interaction is independent of stationary phase polarity.  相似文献   

9.
A method is suggested for relating the relative permittivity, ionization potential, polarizability, and linear dimensions of nonpolar molecules. This was demonstrated for the example of inert gases, some spherical- and symmetric-top molecules, and linear molecules.__________Translated from Zhurnal Prikladnoi Khimii, Vol. 78, No. 3, 2005, pp. 466–469.Original Russian Text Copyright © 2005 by Zevatskii.  相似文献   

10.
We present density-functional perturbation theory for electric field perturbations and ultra-soft pseudopotentials. Applications to benzene and anthracene molecules and surfaces are reported as examples. We point out several issues concerning the evaluation of the polarizability of molecules and slabs with periodic boundary conditions.  相似文献   

11.
An infinitely diluted aqueous solution of Rb+ was studied using ab initio-based model potentials in classical Monte Carlo simulations to describe its structural and thermodynamic features. An existing flexible and polarizable model [Saint-Martin et al. in J Chem Phys 113(24) 10899, 2000] was used for water–water interactions, and the parameters of the Rb+–water potential were fitted to reproduce the polarizability of the cation and a sample of ab initio pair interaction energies. It was necessary to calibrate the basis set to be employed as a reference, which resulted in a new determination of the complete basis set (CBS) limit energy of the optimal Rb+–OH2 configuration. Good agreement was found for the values produced by the model with ab initio calculations of three- and four-body nonadditive contributions to the energy, as well as with ab initio and experimental data for the energies, the enthalpies and the geometric parameters of Rb+(H2O) n clusters, with n = 1,  2,…, 8. Thus validated, the potential was used for simulations of the aqueous solution with three versions of the MCDHO water model; this allowed to assess the relative importance of including flexibility and polarizability in the molecular model. In agreement with experimental data, the Rb+–O radial distribution function (RDF) showed three maxima, and hence three hydration shells. The average coordination number was found to be 6.9, with a broad distribution from 4 to 12. The dipole moment of the water molecules in the first hydration shell was tilted to 55° with respect to the ion’s electric field and had a lower value than the average in bulk water; this latter value was recovered at the second shell. The use of the nonpolarizable version of the MCDHO water model resulted in an enhanced alignment to the ion’s electric field, not only in the first, but also in the second hydration shell. The hydration enthalpy was determined from the numerical simulation, taking into account corrections to the interfacial potential and to the spurious effects due to the periodicity imposed by the Ewald sums; the resulting value lied within the range of the various different experimental data. An analysis of the interaction energies between the ion and the water molecules in the different hydration shells and the bulk showed the same partition of the hydration enthalpy as for K+. The reason for this similarity is that at distances longer than 3 Å, the ion–water interaction is dominated by the charge-(enhanced) dipole term. Thus, it was concluded that starting at K+, the hydration properties of the heavier alkali metal cations should be very similar.  相似文献   

12.
We present pseudopotential local-spin-density calculations of the static electric polarizability of sodium dimers and trimers and their respective cations. The electronic polarizabilities are obtained from self-consistent calculations in the presence of an external electric field, which is kept sufficiently small to avoid non-linear effects. The calculated polarizability tensor has a strong anisotropy directly related to the geometric and electronic structures of the molecules, the anisotropy being larger for the neutral clusters. The polarizabilities are averaged over the vibrational motion and rotations of the aggregates in order to be compared with the experimental measurements. The obtained values show an improvement in the agreement with experiment with respect to the values calculated in the spherical approximation.  相似文献   

13.
The changes in the static electric polarizability upon transition to excited singlet states are measured by perturbing the absorption spectrum with an intense (106 V/cm) electric field. Observations of the Stark effect in a polystyrene matrix are reported for a series of substituted anthracenes, a group of condensed aromatic hydrocarbons and a substituted hexatriene.  相似文献   

14.
Applied electric fields are known to induce significant changes in the properties of systems of polarizable molecules or particles. For rod-shaped molecules, the field-induced behavior can be rather surprising, as in the case of the negative electric birefringence of concentrated solutions of rodlike polyelectrolytes. We have investigated the interplay of shape anisotropy and field-induced anisotropy in molecular dynamics simulations of systems of polarizable soft spherocylinders in an electric field, in the limit of infinitely anisotropic polarizability, taking full account of mutual induction effects. We find a novel crystalline structure (K(2)) in the high-field limit, whose formation is driven by interactions between induced dipoles. For high pressures, the phase diagram exhibits a polar nematic phase between the hexagonal close-packed crystal phase and the K(2) phase. We also compare this system with an analogous system of spherocylinders with permanent electric dipoles and find that qualitatively similar behavior is obtained in the limit of strong coupling of the permanent dipoles to the external field.  相似文献   

15.
The use of molar refractions is insufficient to describe the retention volumes and thermodynamic functions of solutions in nonpolar stationary phases. The heats of dissolution of monofunctional derivatives of the alkanes are proportional to the polarizability and inversely proportional to the sixth power of the van der Waals' radius of the interacting particles. The heat of dissolution of substances being analyzed, with the same number of carbon atoms, in aromatic solvents depends on the conditions of contact between the molecules of the substances being analyzed and the benzene rings of the solvent. The order of the heats of dissolution of substances being analyzed in different nonpolar solvents does not remain the same, indicating that the theory of regular solutions cannot be applied to these systems. To determine the order of the heats of dissolution of isomers in nonpolar stationary phases it is necessary to take account of the electron density distribution in the molecules of the reacting substances and the probability of molecular arrangement for the most favorable interaction.  相似文献   

16.
The aim of this work is to provide a physical model to relate the polarizability per unit cell of oligomers to that of their corresponding infinite polymer chains. For this we propose an extrapolation method for the polarizability per unit cell of oligomers by fitting them to a physical model describing the dielectric properties of polymer chains. This physical model is based on the concept of a dielectric needle in which we assume a polymer chain to be well described by a cylindrically shaped nonconducting rod with a radius much smaller than its length. With this model we study in which way the polarizability per unit cell approaches the limit of the infinite chain. We show that within this model the macroscopic contribution of the induced electric field to the macroscopic electric field vanishes in the limit of an infinite polymer chain, i.e., there is no macroscopic screening. The macroscopic electric field becomes equal to the external electric field in this limit. We show that this identification leads to a relation between the polarizability per unit cell and the electric susceptibility of the infinite polymer chain. We test our dielectric needle model on the polarizability per unit cell of oligomers of the hydrogen chain and polyacetylene obtained earlier using time-dependent current-density-functional theory in the adiabatic local-density approximation and with the Vignale-Kohn functional. We also perform calculations using the same theory on truly infinite polymer chains by employing periodic boundary conditions. We show that by extrapolating the oligomer results according to our dielectric needle model we get good agreement with our results from calculations on the corresponding infinite polymer chains.  相似文献   

17.
We show that combined electrostatic and radiative fields can greatly amplify the directional properties, such as axis orientation and alignment, of symmetric top molecules. In our computational study, we consider all four symmetry combinations of the prolate and oblate inertia and polarizability tensors, as well as the collinear and perpendicular (or tilted) geometries of the two fields. In, respectively, the collinear or perpendicular fields, the oblate or prolate polarizability interaction due to the radiative field forces the permanent dipole into alignment with the static field. Two mechanisms are found to be responsible for the amplification of the molecules' orientation, which ensues once the static field is turned on: (a) permanent-dipole coupling of the opposite-parity tunneling doublets created by the oblate polarizability interaction in collinear static and radiative fields and (b) hybridization of the opposite parity states via the polarizability interaction and their coupling by the permanent dipole interaction to the collinear or perpendicular static field. In perpendicular fields, the oblate polarizability interaction, along with the loss of cylindrical symmetry, is found to preclude the wrong-way orientation, causing all states to become high-field seeking with respect to the static field. The adiabatic labels of the states in the tilted fields depend on the adiabatic path taken through the parameter space comprised of the permanent and induced-dipole interaction parameters and the tilt angle between the two field vectors.  相似文献   

18.
A laser ion-molecule reaction interaction through both polarizability and dipole moment contribution leads to variation in the intersection point in potential energy surface crossings along the reaction path; the polarizability is maximum and the dipole changes its sign at s = 4 a.u., defining a virtual transition state. Using the gauge representation (electric field gauge) for a wave length λ = 20.6 μm, intensity I = 5×1012 W/cm2, I = 1×1013 W/cm2, I = 3×1013 W/cm2, we show here that we can create a laser-induced potential energy surface crossing along the reaction path (s = 7-8 a.u.). We illustrate such effects for the Li H + CH 3 + ? Li+ + CH4 reaction which takes the form of inverted Morse (without a barrier) using ab initio methods for calculating the reaction path and electric properties of the ion-molecule reaction.  相似文献   

19.
The complete dielectric tensor of pyrene single crystals has been measured at 298 K for frequencies of 100 kHz and 1 MHz. The principal components of the tensor are ?1 = 2.70 ± 0.05, ?2 = 3.07 ± 0.03 and ?3 = 3.80 ± 0.08, the 3-axis making an angle of 70° ± 2° with the +a-axis. The results are used to calculate the effective molecular polarizability and the local electric field, with the molecules treated either individually or as ‘dimers’ pairs. The theory is similar to that for naphthalene, with no unique solution, but a simple particular form of solution applicable to either case is chosen to allow comparisons. For a ‘dimer’ pair, the mean polarizability is close to twice that of a free molecule, but more isotropic. For an individual molecule, the mean polarizability is 50% larger than for a free molecule, but the anisotropy is little different. Similarly, the local field due to ‘dimer’ pairs is nearly isotropic whereas the due to individual molecules is markedly anisotropic. These effects stem from the different anisotropy of the interactions explicitly treated in each case. Two simplified local fields resemble that calculated for ‘dimer’ pairs.  相似文献   

20.
We use a variation–perturbation method to calculate the electric polarizabilities and the electric dipole moment of the LiH molecule. We obtain 4.455 for the perpendicular polarizability and 4.001 (×10?24 cm3) for the parallel polarizability. Our result for the electric dipole moment at equilibrium nuclear distance is 5.866, which is in excellent agreement with the experimental value 5.828 debye units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号