首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study deals with the changes in the thermal transformation behaviour of boehmite with mechanical activation (MA), carried out in planetary mill. Observed changes in the TG-DTG–DTA curves are: shifting of the desorption of physically adsorbed water to higher temperature, decrease in the γ-Al2O3 transformation temperature and its peak area, formation of α-Al2O3, not observed for unmilled boehmite upto 1,200 °C, for milling time ≥60 min. Reasons for such changes are explored on the basis of physicochemical changes occurring as a result of high energy milling. Structural degradation is found to increase with increase in milling time. As a consequence of structural changes, Al–OH bonds get stronger, whereas the hydrogen bonds get weaker. Stronger Al–OH bonding and enhanced surface energy increase water affinity and delays its removal. Decreased hydrogen bond strength, easy exit of dehydroxylation product (water) and displacement of Al to tetrahedral positions make the γ-Al2O3 transformation easier. Ease of removal of residual hydroxyls from small crystallite transition alumina from MA boehmite, as a result of shorter diffusion path, ensures α-Al2O3 transformation at lower temperature.  相似文献   

2.
The phase transformation of seeded (5 mass% Fe2O3 as a Fe(NO3)3 solution) boehmite derived alumina gel to α-Al2O3 was studied with DTA technique and compared with unseeded and α-Al2O3 seeded boehmite gels. Data for kinetic analysis of α-Al2O3 crystallization were obtained from quantitative DTA curves. The kinetic parameters were analysed by traditional Kissinger analysis and Friedman and Ozawa-Flynn-Wall methods using the Netzsch Thermokinetics program. Results of the comparison of values of activation energies for all three gels and methods are the process of α-Al2O3 transformation for originally γ-AlOOH/Fe(NO3)3 gels goes like that of unseeded boehmite gels,only under lower temperatures (lower about 200°C). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Unsupported alumina membranes were prepared by sol-gel technique using aluminum isoproxide. The influence of the hydrolysis conditions, the type and concentration of peptizant acid on the boehmite sols has been studied. The suitable hydrolysis temperature for the aluminum isoproxide was above 50°C. Crack-free unsupported alumina membranes were obtained by rapid gelation processing of sols. The boehmite gel membrane and γ-Al2O3 membrane formed exhibited (020) and (440) preferred orientation.  相似文献   

4.
The effective utilization of various biomolecules for creating a series of mesoporous boehmite (γ-AlOOH) and gamma-alumina (γ-Al2O3) nanosheets with unique hierarchical multilayered structures is demonstrated. The nature and concentration of the biomolecules strongly influence the degree of the crystallinity, the morphology, and the textural properties of the resulting γ-AlOOH and γ-Al2O3 nanosheets, allowing for easy tuning. The hierarchical γ-AlOOH and γ-Al2O3 multilayered nanosheets synthesized by using biomolecules exhibit enhanced crystallinity, improved particle separation, and well-defined multilayered structures compared to those obtained without biomolecules. More impressively, these γ-AlOOH and γ-Al2O3 nanosheets possess high surface areas up to 425 and 371 m2 g−1, respectively, due to their mesoporous nature and hierarchical multilayered structure. When employed for molybdenum adsorption toward medical radioisotope production, the hierarchical γ-Al2O3 multilayered nanosheets exhibit Mo adsorption capacities of 33.1–40.8 mg g−1. The Mo adsorption performance of these materials is influenced by the synergistic combination of the crystallinity, the surface area, and the pore volume. It is expected that the proposed biomolecule-assisted strategy may be expanded for the creation of other 3D mesoporous oxides in the future.  相似文献   

5.
Various nickel aluminium mixed hydroxide samples of different compositions were prepared by co-precipitation from their nitrate solutions using dilute NH4OH. Additional samples were prepared by impregnation of hydrated Al2O3, preheated at 600 and 900°C, with nickel nitrate solution in an equimolar ratio. The thermal decomposition of different mixed solids was studied using DTA. The X-ray investigation of thermal products of the mixed solids was also studied.The results obtained revealed that the presence of NiO up to 33.3 mole % with aluminium oxide much enhanced the degree of crystallinity of the γ-Al2O3 phase. In contrast, the presence of Al2O3 much retarded the crystallization process of the NiO phase. With the exception of samples containing 20 mole% NiO, all the mixed hydroxide samples, when heated in air at 900°C, led to the formation of well-crystalline Ni Al2O4 spinel, alone, or together with either NiO or γ-Al2O3, depending on the composition of the mixed oxide samples. The solid containing 20% NiO and heated at 900°C was constituted of amorphous NiO dispersed in γ-Al2O3. Heating the nickel nitrate-impregnated Al2O3 in air at 800–1000°C led to the formation of Ni Al2O4 together with non-reacted NiO and γ-Al2O3. The degree of crystallinity of the spinel was found to increase by increasing the calcination temperature of the impregnated solids from 800 to 1000°C and by increasing the preheating temperature of the hydrated Al2O3 employed from 600 to 900°C.  相似文献   

6.
Differences in the real structure of γ-Al2O3 samples obtained by the thermal decomposition of pseudoboehmite and boehmite prepared by the hydrothermal treatment of bayerite were found. The transformations of these structures during their conversion to δ-Al2O3 as the treatment temperature increased were studied. The rate of conversion of metastable alumina species into the stable α-Al2O3 phase significantly depends on the real structure of samples. The rate of this transformation is drastically retarded in the presence of extended defects in the oxides originated from boehmite, and the stability of metastable alumina species increased as the degree of surface dehydroxylation increased.  相似文献   

7.
A nanostructured α-Al2O3 with particle size lower than 100 nm was obtained from a hazardous waste generated in slag milling process by the aluminium industry. The route developed to synthesize alumina consisted of two steps: in the first one, a precursor of alumina, boehmite, γ-AlOOH was obtained by a sol–gel method. In the second step, the alumina was obtained by calcination of the precursor boehmite (xerogel). Calcination in air was performed at two different temperatures, i.e. 1,300 and 1,400 °C, to determine the influence of this parameter on the quality of resulting alumina. X-Ray diffraction patterns and transmission electron microscopy images of calcined powers revealed beside corundum the presence of transition aluminas and some rest of amorphous phase in the sample prepared at 1,300 °C. The increase of the calcinations temperature to 1,400 °C favors the formation of an almost single-phase corundum powder. The transition of θ- to α-Al2O3 was followed by means of infrared spectroscopy, since it is accompanied by the disappearance of the IR band frequencies associated with tetrahedral sites (AlO4 sites), giving rise to a spectrum dominated by Al3+ ions in octahedral sites (AlO6) characteristic of corundum.  相似文献   

8.
Electron microscopic observations of microstructure, together with studies of the evolution of X-ray and electron diffraction patterns, have been used to provide mechanistic information on the dehydration of boehmite to γ-Al2O3. Firing boehmite in air at 400°C produces slow development of a fine, lamellar, porous microstructure, oriented parallel to (001)γ, the dimensions of which are consistent with the loss of one-quarter of the oxygen atoms of the boehmite lattice. The mechanism proposed for the dehydration is controlled by diffusion in a direction determined by the hydrogen bond chains in the boehmite structure and involves countermigration of the Al cations and protons with crystallographic formation of voids in a coherent cubic close-packed matrix. Final reorganization to give the spinel structure of γ-Al2O3 is suggested to involve gradual filling of the tetrahedral cation sites.  相似文献   

9.
The chlorination processes of four hydrated aluminas (bayerite, gibbsite, pseudoboehmite, boehmite) and four transition aluminas (η-,γ-,δ-,θ-Al2O3) were studied in the presence of active carbon by means of a gas-flow DTA apparatus. In the case of hydrated alumina systems three exothermic peaks appeared at about 230, 460 and 500°C or above, which corresponded to the formation of hydrogen chloride, white needle-like crystals and the chlorination of hydrated aluminas, respectively. On the other hand, in transition alumina systems, only one exothermic peak due to the chlorination of transition alumina appeared at 580–670°C. The relationship between the chlorination behavior and structure of transition aluminas was discussed.  相似文献   

10.
A new method of synthesis of nanosized aluminum oxyhydroxide (AlOOH, boehmite) powders has been suggested through a hydrothermal treatment of nanosized γ-Al2O3 powder in water and a 1.5 wt % HCl solution at different temperatures. It has been found that hydrothermal treatment in a 1.5 wt % HCl solution leads to the purification of the starting material; different treatment durations allow one to obtain boehmite particles of different shape. It has been demonstrated that a nanosized boehmite powder is obtained upon the hydrothermal treatment of a nanosized γ-Al2O3 in water above 80°С. The nanosized boehmite powders synthesized at different temperatures have been studied by various methods.  相似文献   

11.
The boehmite nanofibers were prepared by using NaAlO2 and Al2(SO4)3 as the starting materials without any surfactant. The phase transitions of the boehmite nanofibres against different temperature were studied and various phases were derived from well-crystallized boehmite nanofibers. All these phases had the same morphology even after high temperature calcination. In addition, the retention of specific surface area of the samples were very high because of the limited aggregation occurred in calcinations for each sample. For instance, the ??-Al2O3 obtained at 500?°C had the specific surface area (208.56?m2/g) with an average pore diameter of 6.0?nm. With the further increase of the calcination temperature, the nanofibers became shorter and coarsening, which resulted in the decrease of the specific surface area. It is worthwhile to notice that the BET surface areas (40.97?m2/g) and the pore volume (0.27?cm3/g) of the fibrous structures obtained after 1200?°C calcination are substantially higher than that of the non-fibrous alumina because of the morphology maintenance.  相似文献   

12.
Dawsonite-type compounds of formula MAl(OH)2CO3 (M = Na. K, NH4) as well as a laminar hydrotalcite-type hydroxycarbonate of composition [Al2Li(OH)6]2CO3·4H2O. have been hydrothermally synthesized The thermal decomposition of these compounds was monitored by DTA and TG, and the resulting products have been studied by X-ray and IR techniques. Sodium and potassium dawsonites are destroyed at 335°C. yielding a poorly crystalline compound in which part of the overall carbonate is present; the remaining carbonate is lost between 600 and 700°C, yielding NaAlO2 and KAlO2, respectively Ammonium dawsonite and lithium hydrotalcite are less stable, their thermal decomposition occurring at about 240°C. The ammonium dawsonite heated at 680°C shows the presence of A12O3 with a poorly ordered structure, while lithium hydrotalcite yields poorly crystalline γ-Al2O3 at 500°C and a mixture of γ-LiAlO2 and LiAl5O8 when the compound is heated at higher temperatures ( ~ 1000°C).  相似文献   

13.
The synthesis of catalytic filamentous carbon (CFC) on catalysts prepared by supporting Ni2+ compounds onto the surface of various alumina modifications (macroporous α-Al2O3 and mesoporous ?-Al2O3 and δ-Al2O3) using two procedures (impregnation and homogeneous precipitation) was studied. The texture characteristics (specific surface area and pore structure) of the parent supports and adsorbents with a CFC layer were compared. The effect of the supporting procedure on the surface morphology of Ni/Al2O3 catalysts and the synthesized CFC layer was studied by scanning electron microscopy. It was found that the carbon yield on a macroporous catalyst prepared by homogeneous precipitation was higher than that on a catalyst prepared by impregnation by a factor of ~2. The CFC layer exhibited a mesoporous structure because of a chaotic interlacing of carbon nanofibers, and the synthesis of CFC on macroporous supports resulted in the formation of a bidisperse pore structure of the adsorbent. Active and stable heterogeneous biocatalysts were prepared by the adsorptive immobilization of enzymatically active substances (glucoamylase and nongrowing baker’s yeast cells) on CFC.  相似文献   

14.
In this study, boehmite sols were used for preparation of mesoporous γ-alumina with bimodal mesopore distribution. Superfine nanospheres of poly(methyl methacrylate) (PMMA) prepared by water based emulsion polymerization method were used as a template. Nitrogen sorption revealed that aluminas prepared using this approach demonstrated bimodal mesopore size distribution with maxima at 3.8 and 25.7 nm, respectively. Catalytic tests showed that bimodal mesopore distribution within γ-Al2O3 prepared with PMMA nanospheres as a template provides improved catalytic activity in the methanol dehydration reaction.  相似文献   

15.
Co-precipitation of alumina/YAG precursor from aluminum and yttrium nitrates solution with ammonium carbonate results in dawsonite (NH4Al(OH)2CO3). Its crystallographic parameters differ from the compound precipitated without the yttrium additive. It indicates that yttrium ions become incorporated into the dawsonite structure. The DSC/TG and X-ray measurements show decomposition of dawsonite at elevated temperature resulting in γ-Al2O3 which transforms to δ and θ modifications at still higher temperatures. The full transformation to α-Al2O3 and YAG occurs at temperatures higher than 1,230 °C.  相似文献   

16.
The reduction of nanocrystalline cobalt oxide samples (single-phase and supported on γ-Al2O3) was studied using in situ X-ray diffraction (XRD) analysis. The atomic structures of single-phase and supported Co3O4 samples were refined, and the occurrence of cationic vacancies was demonstrated. A set of methods (XRD, temperature-programmed reduction, and differential dissolution) was used to find that the reduction of supported and unsupported model cobalt oxide was considerably different. The single-phase sample was reduced in undiluted hydrogen to cobalt metal with a hexagonal closely packed structure. The reduction of the supported sample (unlike the single-phase sample) occurred through the formation of a crystalline CoO phase to the formation of cobalt metal with a face-centered cubic structure. Interaction of cobalt oxide with the γ-Al2O3 support, which hinders the reduction to cobalt metal, was detected.  相似文献   

17.
Object of the study in this paper was the mechanical mixtures of amorphous silica and α-Al2O3 with different precursors (gibbsite, boehmite, and γ-Al2O3). The results obtained revealed that measurable interactions exist in different binary systems without previous thermal treatment. These interactions could be explained by the existence of attractive and repulsive forces which appear between the OH groups present on the surfaces of alumina and silica constituents. In thermally treated samples, the interactions are not driven by intermolecular forces but rather by polymorphic transformations of alumina and silica, which are followed by sintering.  相似文献   

18.
Alumina nanofibers were fabricated by calcination of the polyvinylpyrrolidone (PVP)/pseudo-boehmite nanocomposite precursor fibers formed by electrospinning PVP/ethanol solution of dispersed pseudo-boehmite nanoparticles with and without additive of silica. The evolution of the phase, mechanical property and morphological features of the calcined fibers were studied and the effect of adding SiO2 on the phase transformation of alumina was discussed. Adding SiO2 can retard the phase transformation of γ-Al2O3 to α-Al2O3 and therefore inhibit the growth of alumina grains during calcination. Upon calcining the precursor fibers with 4 wt% SiO2 additive at 1,300 °C, continuous alumina nanofibers with diameter ranging from 300 to 800 nm were obtained. These continuous nanofibers exhibited good flexibility and could be very promising for applications in filtration and catalyst support.  相似文献   

19.
The present paper describes the preparation of KF/M-γ-Al2O3, efficient mesoporous solid bases. The procedure involves loading KF into a crystalline mesoporous γ-Al2O3 that was synthesized by the self-assembly of poly-4-vinylpyridine (P4VP) with Al3+ species. The synthesis is based on the strong acid-base interaction, hydrothermal treatment at 180°C and calcination at 550°C. Characterizations using XRD analysis and low temperature N2 adsorption indicated that different amounts of KF could be introduced into crystalline mesoporous γ-Al2O3 to obtain catalysts with high BET surface areas, large pore volumes and uniform pore size distribution. Based on SEM images, KF/M-γ-Al2O3 catalysts have rough surface character and a large nanopore volume. CO2-TPD curves registered for KF/M-γ-Al2O3 contain high temperature peaks, indicating strong basicity of the catalysts. Under the same reaction conditions KF/M-γ-Al2O3 catalysts exhibit much better activities for transesterification to biodiesel than KOH, NaOH, H2SO4, hydrotalcite and CaO. Enhanced activities appear to arise from strong basisity and large BET surface areas.  相似文献   

20.
Reactions of dimethyl ether (DME) over γ-Al2O3 at 250°C have been investigated in a flow catalytic reactor. The main products of the interaction between DME and alumina are methanol and water. Heat evolution is observed as DME is passed over alumina, and replacing DME with nitrogen gives way to heat absorption. Calcination of alumina before the reaction considerably strengthens the exotherm, which is due to DME adsorption, while the endotherm is due to the desorption of weakly bound DME. The role of the hydroxyl groups of γ-Al2O3 in methanol and water formation has been elucidated. Treating alumina with water vapor after bringing it into contact with DME completely restores the hydroxyl cover and replaces strongly adsorbed DME with hydroxyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号