首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2,4,8‐Trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been obtained by the regioselective and stereoselective cyclocondensation of 1,2‐ethanediamine with aldehydes RCHO (R═Me, Et, Prn, Bun, Pentn) and H2S at molar ratio 1:3:2 at 0°C. The increase in molar ratio of thiomethylation mixture RCHO–H2S (6:4) at 40°C resulted in selective formation of bis‐(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)ethanes. Cyclothiomethylation of aliphatic α,ω‐diamines with aldehydes RCHO (R═Me, Et) and H2S at molar ratio 1:6:4 and at 40°С led to α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes. Stereochemistry of 2,4,8‐trialkyl‐3‐thia‐1,5‐diazabicyclo[3.2.1]octanes have been determined by means of 1H and 13С NMR spectroscopy and further supported by DFT calculations at the B3LYP/6‐31G(d,p) level. The structure of α,ω‐bis(2,4,6‐trialkyl‐1,3,5‐dithiazinane‐5‐yl)alkanes was confirmed by single‐crystal X‐ray diffraction study.  相似文献   

2.
A new effective catalytic system FeCl3-I2 was found, that allows the direct oxidative alkoxylation of red phosphorus to trialkyl phosphates to be performed with high rate and selectivity at 60–80°C. Kinetics of the process were studied, and a separate redox mechanism of the process and a scheme of formation of phosphorus esters were offered. Kinetic and activation parameters of the reaction are calculated.  相似文献   

3.
A novel general method for the synthesis of oxindoles, namely the ‘azirine/oxindole ring enlargement via amidinium‐intermediates’ has been established: the reaction of 2H‐azirin‐3‐amines 1 with BF3?OEt2 in THF solution at ?78° leads to 1,3,3‐trialkyl‐2‐amino‐3H‐indolium tetrafluoroborates 14 in good yields (Scheme 5). Treatment of aqueous solutions of 14 at 0° with aqueous NaOH (30%) and extraction with CH2Cl2 gives oily substances that are either hydrates of 1,3,3‐trialkyl‐2‐dihydroindol‐2‐imines 15 or the corresponding indolium hydroxides. These products are transformed to the corresponding 1,3,3‐trialkyl‐2,3‐dihydroindol‐2‐ones 17 in modest yields upon refluxing in H2O/THF. Reaction of 14 with Ac2O in pyridine at ca. 23° for 16 h followed by aqueous workup and chromatographic separation leads to mixtures of N‐(1,3,3‐trialkyl‐2,3‐dihydro‐indol‐2‐yliden)acetamides 16 and oxindoles 17 (Scheme 6). Hydrolysis of 16 with aqueous HCl under reflux for 1–2 h gives oxindoles 17 in a good yield. Several oxindoles, spiro‐oxindoles, and 5‐substituted oxindoles were synthesized by means of the reactions mentioned above.  相似文献   

4.
Synthesis of α‐amino phosphonates is described under solvent‐free conditions at 100°C from reaction between aldehydes and amines in the presence of trialkyl phosphites using Al(H2PO4)3 as an efficient and reusable heterogeneous catalyst. The advantages of this procedure are short reaction time, flexibility and having high to excellent yields.  相似文献   

5.
The high molecular weight polymer of α-piperidone, which had been unobtainable with the use of alkali metal, trialkyl aluminum, or Grignard reagent as catalyst, was prepared with M–AlEt3, (where M is alkali metal), MAlEt4 or KAlEt3 (piperidone) as catalyst and N-acyl-α-piperidone as initiator. From the determination of the behavior of the solution viscosity of poly-α-piperidone in m-cresol at 30°C. the value of 0.27 for the Huggins constant was obtained. Examination of the correlation between the number-average molecular weight, determined by endgroup titration, and the intrinsic viscosity gave a somewhat small value for the endgroup COOH. This may be considered due to the consumption of N-acyl-α-piperidone by a propagating polymer in the course of polymerization. The thermal stabilities of the polyamides, nylons 4, 5, and 6, was in the order nylons 6 > 5 > 4 according to differential thermal and thermogravimetric analyses, Poly-α-piperidone, which has a reduced viscosity of 0.7, shows a melting point of 270°C.. which was expected from the zigzag pattern of the correlation between melting points and numbers of CH2 groups for polyamino-acid polymers.  相似文献   

6.
The thermal decomposition of CoOOH(H2O)0.1-0.025 Co(OH)2 material was investigated derivatographically up to 500 °C in air and in N2. The reaction proceeds in three stages: separation of the non-stoichiometrically bonded water (20–220 °C), decomposition of Co(OH)2 (220–252 °C) and CoOOH decomposition (244–312 °C). The effect of impurities on the last stage is discussed.  相似文献   

7.
By column chromatography on polyamide sorbent, the inflorescences of pot marigold calendula have yielded eight substances of flavonoid nature: two aglycons — quercetin (C15H10O7, mp 309–311°C) and isorhamnetin (C16H12O7, mp 314–316°C); six glycosides, of which three have been identified as isoquercetin (C21H20O12, [α] D 20 ?36° in methanol, mp 218–220°C), isorhamnetin 3-O-β-D-glucoside (C22H22O12, [α] D 20 ?59° in dimethylformamide, mp 193–195°C), narcissin (C28H32O16, [α] D 21 ?28° in dimethylformamide, mp 180–182°C), and three substances that have proved to be new and have been called calendoflaside (C28H32O15, [α] D 21 ?85° in methanol, mp 192–195°C; calendoflavoside (C28H32O16, [α] D 20 ?106° in methanol, mp 189–192°C), and calendoflavobioside (c27H30O16, [α] D 20 ?105° in methanol, mp 194–197°C).  相似文献   

8.
A novel class of linear poly(dialkoxyphosphinyl-s-triazine)s were prepared by interfacial or solution polycondensation reactions of various diamines such as ethylenediamine, hexamethy-lenediamine or bis(4-aminocyclohexyl)methane with 2-dialkoxyphosphinyl-4,6-dichloro-s-triazines. The latter were synthesized by reacting cyanuric chloride with an equimolar amount of trialkyl phosphite. The phosphorous-containing polymers were characterized by inherent viscosity measurements as well as by infrared (IR) and proton nuclear magnetic resonance (1H-NMR) spectroscopy. The thermal properties of polymers were investigated by differential thermal analysis (DTA) and thermogravimetric analysis (TGA). Pyrolysis of all polymers was exothermic. Polymers were stable up to 150–200°C both in nitrogen and air atmosphere. They afforded 16–42% char yield at 700°C under anaerobic conditions.  相似文献   

9.
Series of mesogenic laterally fluorinated compounds, 2-(2′,3′-difluoro-4′-alkoxybiphenyl-4-yl)-benzoxazole derivatives (nB-Fx) bearing different substituents (H, CH3, Cl, NO2, coded as nB-FH, nB-FM, nB-FC and nB-FN, respectively) at 5-position, were prepared and characterised. Their phase transition behaviour was investigated by differential scanning calorimetry and polarising optical microscopy. nB-Fx with alkoxy chain lengths of 2 to 10 carbons exhibited enantiotropic mesophases, for which the mesophase ranges were 0°C–58°C and 0°C–71°C on heating and cooling for nB-FH, 41°C–93°C and 66°C–140°C for nB-FM, 44°C–133°C and 87°C–155°C for nB-FC, and 0°C–76°C and 0°C–95°C for nB-FN, respectively. Compared to non-fluorinated analogues, with the exception of nB-FC, fluorinated nB-Fx mainly exhibited nematic mesophase both in heating and cooling, which were attributed to the disruption of the side-to-side intermolecular packing caused by the two ortho-lateral fluoro substituents. For nB-Fx series, nB-FM, nB-FC and nB-FN exhibited a much wider mesophase range than the corresponding nB-FH series, which indicated that the substituent at benzoxazole moiety was helpful in increasing the mesophase stability. With the exception of nB-FN, the nB-Fx series displayed intense photoluminescence emission at 379–383 nm in methylene chloride solution, when it was excited at its absorption maxima.  相似文献   

10.
A material based on lanthanum orthophosphate LaPO4 with inclusion of particles of lanthanum metaphosphate LaP3O9 was synthesized. The influence of the process parameters of the synthesis on the structure and properties of the material was determined. Heat treatment of the coprecipitated lanthanum phosphates at 700°C leads to the formation of a nanopowder with the LaPO4crystallite size of approximately 17 nm. Heat treatment of the nanopowder at temperatures from 1100 to 1500°C yields compact materials based on the LaPO4–LaP3O9 system. The heat treatment of the nanopowder at 1100°C leads to a sharp decrease in the porosity of the material (to ~5%) at insignificant grain growth (200–400 nm); under these conditions, the thermal conductivity [λ(25°C) = 3.2 W m–1 K–1], microhardness [Hv(25°C) = 4.6 ± 0.4 GPa], Young’s modulus [E(25°C) = 132 ± 9 GPa], and cracking resistance [K1c(25°C) = 1.6 ± 0.1 MPa m1/2] pass through maxima. The thermal expansion coefficient of the material depends on the heat treatment conditions only slightly and amounts to (8.2 ± 0.2) × 10–6 K–1.  相似文献   

11.
Element–Element Bonds. X. Studies of Chloro(diphenyl)stibane, Tribenzylstibane and Tribenzyldibromostiborane – Molecular Structures and Isotypism Chlorodiphenylstibane ( 1 d ) {P21/c; Z = 4; a = 1191.8(1); b = 853.4(1); c = 1112.0(1) pm; β = 93.60(1)°; –100 ± 2 °C} crystallizes isotypically with a series of homologous (H5C6)2E–X compounds (E = As, X = Cl, Br, I; E = Sb, X = Br, I); the structure type of tribenzylstibane ( 5 d ) {Pbca; Z = 8; a = 832.1(2); b = 2681.3(5) pm; c = 1600.9(3); –100 ± 3 °C} is already known from tribenzylmethanol, ‐silanol and ‐silane. Tribenzyldibromostiborane ( 6 ) {P21/n; Z = 4; a = 938.4(2); b = 2292.4(5); c = 1019.7(2) pm; β = 112.71(1)°; –100 ± 3 °C} does not show an analogous relationship to known structure types. Characteristic mean bond lengths and angles are { 1 d , Sb–Cl 240.9(1), Sb–C 214.0 pm, Cl–Sb–C 93.8°, C–Sb–C 98.6(1)°; 5 d , Sb–C 217.5(3) pm, C–Sb–C 94.9(6)°; 6 , Sb–Br 264.6; Sb–C 217.0(8) pm, Br–Sb–Br 179.4(1)°; C–Sb–C 120°; Br–Sb–C 84.8(2)° to 94.7(2)°}. Stiborane 6 exhibits very weak intermolecular Sb‥Br interactions of 417 pm which, however, affect the molecular conformation in a striking way.  相似文献   

12.
The molecular geometries of three conformations of methyl propanoate (MEP) (C? C? C?O torsions of 0°, 120°, and 180°) and the potential-energy surfaces of MEP (C? C? C?O torsions) and of the methyl ester of glycine (MEG) (N? C? C?O torsions) have been determined by ab initio gradient calculations at the 4-21G level. MEP has conformational energy minima at 0° and 120° of the C? C? C?O torsion, while the 60–90° range and 180° are energy maxima. For MEG there are two minima (at 0° and 180°) and one barrier to N? C? C?O rotation in the 60–90° range. The N? C? C?O barrier height is about twice as high (4 kcal/mol) as the C? C? C?O barrier. The 180° N? C? C?O minimum is characteristically wide and flat allowing for considerable flexibility of the N? C? C?O torsion in the 150–210° range. This flexibility could be of potential importance for polypeptide systems, since the N? C? C?O angles of helical forms are usually found in this region. The molecular structures of the methyl ester group CH3OC(?O)CHRR′ in several systems are compared and found to be rather constant when R ? H and R′ ? H, CH3, CH3CH2; or when R ? NH2 and R′ ? H, CH3, or CH(CH3)2.  相似文献   

13.
The reaction between roasted serpentine ore and ammonium sulfate was studied at the range of temperature 250–1000°C using different molar ratios to determine the maximum extraction of magnesia and also to characterize the different reaction products. The maximum extraction of MgO from the roasted ore reached 92.4% at 400°C. It was found from XRD that ammonium magnesium sulfate [(NH4)2Mg2(SO4)3] was produced as the main product at 400°C, which decomposes to magnesium sulfate at 500–600°C. The last compound decomposes to magnesium oxide at 900–1000°C. Thermal analysis of the reaction mixture confirmed the results obtained by XRD. Extraction of magnesia by ammonium chloride at 300–400°C showed low percentage of extraction (7.8%). Comparison was made between using ammonium chloride instead of sulfate taking into consideration the thermal decomposition products of both ammonium salts. Extraction of magnesia from the roasted ore by aqueous ammonium sulfate or ammonium chloride showed good results.  相似文献   

14.
Li2FeSiO4/C cathode materials have been prepared using the conventional solid-state method by varying the sintering temperature (650 °C, 700 °C and 750 °C), and the structure and electrochemical performance of Li2FeSiO4/C materials are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), galvanostatic charge–discharge tests, respectively. The results show that Li2FeSiO4 nano-crystals with a diameter of about 6–8 nm are inbedded in the amorphous carbon, and the Li2FeSiO4/C material obtained at 700 °C exhibits an initial discharge capacity of 195 mA?h g?1 at 1/16 C in the potential range of 1.5–4.8 V. The excellent electrochemical performance of Li2FeSiO4/C attributes to the improvement of conductivity and reduction of impurity by the optimization of the sintering temperature.  相似文献   

15.
The Cs2HPO4 · 2H2O single crystals synthesized from an aqueous solution containing equimolar amounts of H3PO4 and Cs2CO3 were studied by impedance and IR spectroscopy, X-ray diffraction analysis, and differential scanning calorimetry (DSC). The IR spectra were analyzed in accordance with the structural data, and the absorption bands were assigned. The proton conductivity was studied at temperatures in the range 20–250°C. The conductivity of dehydrated Cs2HPO4 was low, ~10–5–10–9 S cm–1 at 90–250°C with an activation energy of conductivity E a = 1.1 eV at 130–250°C. The processes determining the character of the temperature dependence of conductivity were consistent with the DSC and thermogravimetry data. According to these data, dehydration of the crystalline hydrate Cs2HPO4 · 2H2O starts at 60°C and occurs in three stages, forming Cs2HPO4 · 1.5H2O below 100°C; anhydrous Cs2HPO4 at t > 160°C, which is stable up to 300°C; and Cs4P2O7 above 330°C.  相似文献   

16.
8,13-Epoxylabd-14-en-19-oic [(mannoyl oxide)-19-oic] acid, mp 64–66°C, [α]D ?39.2° (c 1.0; ethanol) has been isolated from the needles ofPinus sylvestris. The following derivatives have been obtained: methyl 8,13-epoxylabd-14-en-19-oate, with mp 83–85°C, [α]D ?43.2° (c 1.2; ethanol); 8,13-epoxylabd-14-en-19-ol, an oil, [α]D ?10.9° (c 1.0; ethanol), n D 25 1.5025, cyclohexylammonium salt with mp 113–115°C, [α]D ?29.3° (c 1.0; ethanol); and 8,13-epoxydihydrolabd-14-en-19-oic acid with mp 61–63°C, [α]D ?23.1° (c 1.0; ethanol). The structures of the compounds were established by IR, mass, PMR, and13C NMR spectroscopy.  相似文献   

17.
The syntheses of P[CCCF3]3, As[CC CF3]3, and Sb[CCCF3]3 are reported. The compounds are colorless and volatile, with melting points of ?20° to ?25°, 23–24°, and 55–56°C, respectively. The mass spectra show the molecular ion of each compound. The rearrangement ion [F3CCCCCCF2]+] gives the strongest peak in each spectrum.  相似文献   

18.
The products evolved during the thermal decomposition of kaolinite–urea intercalation complex were studied by using TG–FTIR–MS technique. The main gases and volatile products released during the thermal decomposition of kaolinite–urea intercalation complex are ammonia (NH3), water (H2O), cyanic acid (HNCO), carbon dioxide (CO2), nitric acid (HNO3), and biuret ((H2NCO)2NH). The results showed that the evolved products obtained were mainly divided into two processes: (1) the main evolved products CO2, H2O, NH3, HNCO are mainly released at the temperature between 200 and 450 °C with a maximum at 355 °C; (2) up to 600 °C, the main evolved products are H2O and CO2 with a maximum at 575 °C. It is concluded that the thermal decomposition of the kaolinite–urea intercalation complex includes two stages: (a) thermal decomposition of urea in the intercalation complex takes place in four steps up to 450 °C; (b) the dehydroxylation of kaolinite and thermal decomposition of residual urea occurs between 500 and 600 °C with a maximum at 575 °C. The mass spectrometric analysis results are in good agreement with the infrared spectroscopic analysis of the evolved gases. These results give the evidence on the thermal decomposition products and make all explanation have the sufficient evidence. Therefore, TG–MS–IR is a powerful tool for the investigation of gas evolution from the thermal decomposition of materials and its intercalation complexes.  相似文献   

19.
The twisting effect of benzene rings on the electronic spectra of derivatives of benzophenone (BPh), 2-hydroxy-4,6-dimethylbenzophenone (2-OH-4,6-diCH3BPh) and 2,4,6-trimethoxybenzophenone (2,4,6-triOCH3BPh) has been interpreted by the PPP method. The effect of structure, protonation, ionization and interaction with proton-acceptor solvent on the twisting of aromatic rings is discussed. The following twist angles of substituted ring (θI) and unsubstituted ring (θII) in 2-OH-4,6-diCH3BPh were found: neutral form in cyclohexane θI = 39°–48°, θII = ?30°–(?45°); neutral form in ethanol θI = 66°–72°, θII = ?30°–0°; protonized form θI = 64°–6°, θII = ?30°–0°; ionized form θI = 66°–74°, θII = ?30°–0°. In the neutral form of 2,4,6-triOCH3PBh the substituted ring is twisted by angle θI ~ 70° while in the protonated form the unsubstituted ring is twisted by angle θII ~ 60° and the substituted one is coplanar with the CO group.  相似文献   

20.
The molecular structure and conformation of nitrobenzene has been reinvestigated by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) spectroscopic data, and quantum chemical calculations. The equilibrium r e structure of nitrobenzene was determined by a joint analysis of the GED data and rotational constants taken from the literature. The necessary anharmonic vibrational corrections to the internuclear distances (r e ? r a) and to rotational constants (B e (i)  ? B 0 (i) ) were calculated from the B3LYP/cc-pVTZ quadratic and cubic force fields. A combined analysis of GED and MW data led to following structural parameters (r e) of planar nitrobenzene (the total estimated uncertainties are in parentheses): r(C–C)av = 1.391(3) Å, r(C–N) = 1.468(4) Å, r(N–O) = 1.223(2) Å, r(C–H)av = 1.071(3) Å, \({\angle}\)C2–C1–C6 = 123.5(6)°, \({\angle}\)C1–C2–C3 = 117.8(3)°, \({\angle}\)C2–C3–C4 = 120.3(3)°, \({\angle}\)C3–C4–C5 = 120.5(6)°, \({\angle}\)C–C–N = 118.2(3)°, \({\angle}\)C–N–O = 117.9(2)°, \({\angle}\)O–N–O = 124.2(4)°, \({\angle}\)(C–C–H)av = 120.6(20)°. These structural parameters reproduce the experimental B 0 (i) values within 0.05 MHz. The experimental results are in good agreement with the theoretical calculations. The barrier height to internal rotation of nitro group, 4.1±1.0 kcal/mol, was estimated from the GED analysis using a dynamic model. The equilibrium structure was also calculated using the experimental rotational constants for nitrobenzene isotopomers and theoretical rotation–vibration interaction constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号