首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study multi-parameter regularization (multiple penalties) for solving linear inverse problems to promote simultaneously distinct features of the sought-for objects. We revisit a balancing principle for choosing regularization parameters from the viewpoint of augmented Tikhonov regularization, and derive a new parameter choice strategy called the balanced discrepancy principle. A priori and a posteriori error estimates are provided to theoretically justify the principles, and numerical algorithms for efficiently implementing the principles are also provided. Numerical results on deblurring are presented to illustrate the feasibility of the balanced discrepancy principle.  相似文献   

2.
反问题是现在数学物理研究中的一个热点问题,而反问题求解面临的一个本质性困难是不适定性。求解不适定问题的普遍方法是:用与原不适定问题相“邻近”的适定问题的解去逼近原问题的解,这种方法称为正则化方法.如何建立有效的正则化方法是反问题领域中不适定问题研究的重要内容.当前,最为流行的正则化方法有基于变分原理的Tikhonov正则化及其改进方法,此类方法是求解不适定问题的较为有效的方法,在各类反问题的研究中被广泛采用,并得到深入研究.  相似文献   

3.
In this paper, we investigate a Cauchy problem associated with Helmholtz-type equation in an infinite “strip”. This problem is well known to be severely ill-posed. The optimal error bound for the problem with only nonhomogeneous Neumann data is deduced, which is independent of the selected regularization methods. A framework of a modified Tikhonov regularization in conjunction with the Morozov’s discrepancy principle is proposed, it may be useful to the other linear ill-posed problems and helpful for the other regularization methods. Some sharp error estimates between the exact solutions and their regularization approximation are given. Numerical tests are also provided to show that the modified Tikhonov method works well.  相似文献   

4.
Nonstationary iterated Tikhonov is an iterative regularization method that requires a strategy for defining the Tikhonov regularization parameter at each iteration and an early termination of the iterative process. A classical choice for the regularization parameters is a decreasing geometric sequence which leads to a linear convergence rate. The early iterations compute quickly a good approximation of the true solution, but the main drawback of this choice is a rapid growth of the error for later iterations. This implies that a stopping criteria, e.g. the discrepancy principle, could fail in computing a good approximation. In this paper we show by a filter factor analysis that a nondecreasing sequence of regularization parameters can provide a rapid and stable convergence. Hence, a reliable stopping criteria is no longer necessary. A geometric nondecreasing sequence of the Tikhonov regularization parameters into a fixed interval is proposed and numerically validated for deblurring problems.  相似文献   

5.
Tikhonov regularization is one of the most popular approaches to solving linear discrete ill‐posed problems. The choice of the regularization matrix may significantly affect the quality of the computed solution. When the regularization matrix is the identity, iterated Tikhonov regularization can yield computed approximate solutions of higher quality than (standard) Tikhonov regularization. This paper provides an analysis of iterated Tikhonov regularization with a regularization matrix different from the identity. Computed examples illustrate the performance of this method.  相似文献   

6.
In a recent paper an algorithm for large‐scale Tikhonov regularization in standard form called GKB‐FP was proposed and numerically illustrated. In this paper, further insight into the convergence properties of this method is provided, and extensions to general‐form Tikhonov regularization are introduced. In addition, as alternative to Tikhonov regularization, a preconditioned LSQR method coupled with an automatic stopping rule is proposed. Preconditioning seeks to incorporate smoothing properties of the regularization matrix into the computed solution. Numerical results are reported to illustrate the methods on large‐scale problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Tikhonov regularization is a popular method for the solution of linear discrete ill-posed problems with error-contaminated data. Nonstationary iterated Tikhonov regularization is known to be able to determine approximate solutions of higher quality than standard Tikhonov regularization. We investigate the choice of solution subspace in iterative methods for nonstationary iterated Tikhonov regularization of large-scale problems. Generalized Krylov subspaces are compared with Krylov subspaces that are generated by Golub–Kahan bidiagonalization and the Arnoldi process. Numerical examples illustrate the effectiveness of the methods.  相似文献   

8.
The numerical solution of linear discrete ill-posed problems typically requires regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one. The most popular regularization methods for problems of small to moderate size, which allow evaluation of the singular value decomposition of the matrix defining the problem, are the truncated singular value decomposition and Tikhonov regularization. The present paper proposes a novel choice of regularization matrix for Tikhonov regularization that bridges the gap between Tikhonov regularization and truncated singular value decomposition. Computed examples illustrate the benefit of the proposed method.  相似文献   

9.
For a two-dimensional heat conduction problem, we consider its initial boundary value problem and the related inverse problem of determining the initial temperature distribution from transient temperature measurements. The conditional stability for this inverse problem and the error analysis for the Tikhonov regularization are presented. An implicit inversion method, which is based on the regularization technique and the successive over-relaxation (SOR) iteration process, is established. Due to the explicit difference scheme for a direct heat problem developed in this paper, the inversion process is very efficient, while the application of SOR technique makes our inversion convergent rapidly. Numerical results illustrating our method are also given.  相似文献   

10.
This paper is concerned with the inverse problem of reconstructing an infinite, locally rough interface from the scattered field measured on line segments above and below the interface in two dimensions. We extend the Kirsch-Kress method originally developed for inverse obstacle scattering problems to the above inverse transmission problem with unbounded interfaces. To this end, we reformulate our inverse problem as a nonlinear optimization problem with a Tikhonov regularization term. We prove the convergence of the optimization problem when the regularization parameter tends to zero. Finally, numerical experiments are carried out to show the validity of the inversion algorithm.  相似文献   

11.
We shall discuss the relations among sampling theory (Sinc method), reproducing kernels and the Tikhonov regularization. Here, we see the important difference of the Sobolev Hilbert spaces and the Paley–Wiener spaces when we use their reproducing kernel Hibert spaces as approximate spaces in the Tikhonov regularization. Further, by using the Paley–Wiener spaces, we shall illustrate numerical experiments for new inversion formulas for the Gaussian convolution as a much more powerful and improved method by using computers. In this article, we shall be able to give practical numerical and analytical inversion formulas for the Gaussian convolution that is realized by computers.  相似文献   

12.
In this paper we introduce a new variant of L-curve to estimate the Tikhonov regularization parameter for the regularization of discrete ill-posed problems. This method uses the solution norm versus the regularization parameter. The numerical efficiency of this new method is also discussed by considering some test problems.  相似文献   

13.
A common way to handle the Tikhonov regularization method for the first kind Fredholm integral equations, is first to discretize and then to work with the final linear system. This unavoidably inflicts discretization errors which may lead to disastrous results, especially when a quadrature rule is used. We propose to regularize directly the integral equation resulting in a continuous Tikhonov problem. The Tikhonov problem is reduced to a simple least squares problem by applying the Golub-Kahan bidiagonalization (GKB) directly to the integral operator. The regularization parameter and the iteration index are determined by the discrepancy principle approach. Moreover, we study the discrete version of the proposed method resulted from numerical evaluating the needed integrals. Focusing on the nodal values of the solution results in a weighted version of GKB-Tikhonov method for linear systems arisen from the Nyström discretization. Finally, we use numerical experiments on a few test problems to illustrate the performance of our algorithms.  相似文献   

14.
We recently proposed in [Cheng, XL et al. A novel coupled complex boundary method for inverse source problems Inverse Problem 2014 30 055002] a coupled complex boundary method (CCBM) for inverse source problems. In this paper, we apply the CCBM to inverse conductivity problems (ICPs) with one measurement. In the ICP, the diffusion coefficient q is to be determined from both Dirichlet and Neumann boundary data. With the CCBM, q is sought such that the imaginary part of the solution of a forward Robin boundary value problem vanishes in the problem domain. This brings in advantages on robustness and computation in reconstruction. Based on the complex forward problem, the Tikhonov regularization is used for a stable reconstruction. Some theoretical analysis is given on the optimization models. Several numerical examples are provided to show the feasibility and usefulness of the CCBM for the ICP. It is illustrated that as long as all the subdomains share some portion of the boundary, our CCBM-based Tikhonov regularization method can reconstruct the diffusion parameters stably and effectively.  相似文献   

15.
Abstract

We provide a modified augmented Lagrange method coupled with a Tikhonov regularization for solving ill-posed state constrained elliptic optimal control problems with sparse controls. We consider a linear quadratic optimal control problem without any additional L2 regularization terms. The sparsity is guaranteed by an additional L1 term. Here, the modification of the classical augmented Lagrange method guarantees us uniform boundedness of the multiplier that corresponds to the state constraints. We present a coupling between the regularization parameter introduced by the Tikhonov regularization and the penalty parameter from the augmented Lagrange method, which allows us to prove strong convergence of the controls and their corresponding states. Moreover, convergence results proving the weak convergence of the adjoint state and weak*-convergence of the multiplier are provided. Finally, we demonstrate our method in several numerical examples.  相似文献   

16.
Tikhonov Regularization of Large Linear Problems   总被引:1,自引:0,他引:1  
Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a new numerical method, based on Lanczos bidiagonalization and Gauss quadrature, for Tikhonov regularization of large-scale problems. An estimate of the norm of the error in the data is assumed to be available. This allows the value of the regularization parameter to be determined by the discrepancy principle.  相似文献   

17.
An efficient and robust electrical resistivity tomographic inversion algorithm based on the Levenberg-Marquardt method is considered to obtain quantities like grain size, spatial scale and particle size distribution of mineralized rocks. The corresponding model in two dimensions is based on the Maxwell equations and leads to a partial differential equation with mixed Dirichlet-Neumann boundary conditions. The forward problem is solved numerically with the finite-difference method. However, the inverse problem at hand is a classical nonlinear and ill-posed parameter estimation problem. Linearizing and applying the Tikhonov regularization method yields an iterative scheme, the Levenberg-Marquardt method. Several large systems of equations have to be solved efficiently in each iteration step which is accomplished by the conjugate gradient method without setting up the corresponding matrix. Instead fast matrix-vector multiplications are performed directly. Therefore, the derivative and its adjoint for the parameter-to-solution map are needed. Numerical results demonstrate the performance of our method as well as the possibility to reconstruct some of the desired parameters.  相似文献   

18.
We extend the Tikhonov regularization method widely used in optimization and monotone variational inequality studies to equilibrium problems. It is shown that the convergence results obtained from the monotone variational inequality remain valid for the monotone equilibrium problem. For pseudomonotone equilibrium problems, the Tikhonov regularized subproblems have a unique solution only in the limit, but any Tikhonov trajectory tends to the solution of the original problem, which is the unique solution of the strongly monotone equilibrium problem defined on the basis of the regularization bifunction.  相似文献   

19.
The emulation of mechanical systems is a popular application of artificial neural networks in engineering. This paper examines general principles of modelling mechanical systems by feedforward artificial neural networks (FFANNs). The slow convergence issue associated with the highly parallel and redundant structure of FFANN systems is addressed by formulating criteria for constraining network parameters so that FFANNs may be reliably applied to mechanics problems. The existence of the FFANN mechanical model and its stability during construction, with respect to the error in the data, are analyzed. Also, a class of differential equations is analyzed for use with Tikhonov regularization. It is shown that the use of Tikhonov regularization can aid in FFANN data-driven construction with a priori mathematical models of varying degrees of physical fidelity. Criteria to ensure successful FFANN application from an engineering perspective are established.  相似文献   

20.
This work is concerned with an inverse approach to determine boundary tractions from displacements measured on a remote surface. The influence of measurement location and regularization on the evaluation of unknown tractions is mainly investigated through numerical experiments. The finite element method is employed in the inversion process, and the Tikhonov and the truncated singular value decomposition techniques are used to regularize an ill-conditioned system. The analytical relation between measurement location and the conditioning of a spring inverse problem is presented in this paper. Numerical results show that the solutions of inverse problems using the finite element method are very sensitive to measurement location. In addition, the effects of regularization and noise added to measured displacements are discussed through numerical examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号