共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
Coon JJ Shabanowitz J Hunt DF Syka JE 《Journal of the American Society for Mass Spectrometry》2005,16(6):880-882
Ion/ion reactions of multiply deprotonated peptide anions with xenon radical cations result in electron abstraction to generate
charge-reduced peptide anions containing a free-radical site. Peptide backbone cleavage then occurs by hydrogen radical abstraction
from a backbone amide N to facilitate cleavage of the adjacent C-C bond, thereby producing a- and x-type product ions. Introduction
of free-radical sites to multiply charged peptides allows access to new fragmentation pathways that are otherwise too costly
(e. g., lowers activation energies). Further, ion/ion chemistry, namely electron transfer reactions, presents a rapid and
efficient means of generating odd-electron multiply charged peptides; these reactions can be used for studying gas-phase chemistries
and for peptide sequence analysis. 相似文献
3.
Biodegradable polyesters were ionized by electrospray ionization and characterized by tandem mass spectrometry using collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) as activation methods. The compounds studied include one homopolymer, polylactide and two copolymers, poly(ethylene adipate) and poly(butylene adipate). CAD of [M+2Na]2+ ions from these polyesters proceeds via charge‐remote 1,5‐H rearrangements over the ester groups, leading to cleavages at the (CO)O–alkyl bonds. ETD of the same precursor ions creates a radical anion at the site of electron attachment, which fragments by radical‐induced cleavage of the (CO)O–alkyl bonds and by intramolecular nucleophilic substitution at the (CO)–O bonds. In contrast to CAD, ETD produces fragments in one charge state only and does not cause consecutive fragmentations, which simplifies spectral interpretation and permits conclusive identification of the correct end groups. The radical‐site reactions occurring during ETD are very similar with those reported for ETD of protonated peptides. Unlike multiply protonated species, multiply sodiated precursors form ion pairs (salt bridges) after electron transfer, thereby promoting dissociations via nucleophilic displacement in addition to the radical‐site dissociations typical in ETD. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
Liang X Liu J LeBlanc Y Covey T Ptak AC Brenna JT McLuckey SA 《Journal of the American Society for Mass Spectrometry》2007,18(10):1783-1788
The ability to generate gaseous doubly charged cations of glycerophosphocholine (GPC) lipids via electrospray ionization has made possible the evaluation of electron-transfer dissociation (ETD) for their structural characterization. Doubly sodiated GPC cations have been reacted with azobenzene radical anions in a linear ion trap mass spectrometer. The ion/ion reactions proceed through sodium transfer, electron-transfer, and complex formation. Electron-transfer reactions are shown to give rise to cleavage at each ester linkage with the subsequent loss of a neutral quaternary nitrogen moiety. Electron-transfer without dissociation produces [M + 2Na](+.) radical cations, which undergo collision-induced dissociation (CID) to give products that arise from bond cleavage of each fatty acid chain. The CID of the complex ions yields products similar to those produced directly from the electron-transfer reactions of doubly sodiated GPC, although with different relative abundances. These findings indicate that the analysis of GPC lipids by ETD in conjunction with CID can provide some structural information, such as the number of carbons, degree of unsaturation for each fatty acid substituent, and the positions of the fatty acid substituents; some information about the location of the double bonds may be present in low intensity CID product ions. 相似文献
5.
David M. Crizer Scott A. McLuckey 《Journal of the American Society for Mass Spectrometry》2009,20(7):1349-1354
Unmodified and amide nitrogen methylated peptide cations were reacted with azobenzene radical anions to study the utility
of electron transfer dissociation (ETD) in analyzing N-methylated peptides. We show that methylation of the amide nitrogen
has no deleterious effects on the ETD process. As a result, location of alkylation on amide nitrogens should be straightforward.
Such a modification might be expected to affect the ETD process if hydrogen bonding involving the amide hydrogen is important
for the ETD mechanism. The partitioning of the ion/ion reaction products into all of the various reaction channels was determined
and compared for modified and unmodified peptide cations. While subtle differences in the relative abundances of the various
ETD channels were observed, there is no strong evidence that hydrogen bonding involving the amide nitrogen plays an important
role in the ETD process. 相似文献
6.
Cooper HJ Hudgins RR Håkansson K Marshall AG 《Journal of the American Society for Mass Spectrometry》2002,13(3):241-249
We have used electrospray ionization (ESI) Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry to characterize amino acid side chain losses observed during electron capture dissociation (ECD) of ten 7- to 14-mer peptides. Side-chain cleavages were observed for arginine, histidine, asparagine or glutamine, methionine, and lysine residues. All peptides containing an arginine, histidine, asparagine or glutamine showed the losses associated with that residue. Methionine side-chain loss was observed for doubly-protonated bombesin. Lysine side-chain loss was observed for triply-protonated dynorphin A fragment 1-13 but not for the doubly-protonated ion. The proximity of arginine to a methoxy C-terminal group significantly enhances the extent of side-chain fragmentation. Fragment ions associated with side-chain losses were comparable in abundance to those resulting from backbone cleavage in all cases. In the ECD spectrum of one peptide, the major product was due to fragmentation within an arginine side chain. Our results suggest that cleavages within side chains should be taken into account in analysis of ECD mass spectral data. Losses from arginine, histidine, and asparigine/glutamine can be used to ascertain their presence, as in the analysis of unknown peptides, particularly those with non-linear structures. 相似文献
7.
Rios D Rutkowski PX Shuh DK Bray TH Gibson JK Van Stipdonk MJ 《Journal of mass spectrometry : JMS》2011,46(12):1247-1254
Reported here is a comparison of electron transfer dissociation (ETD) and collision‐induced dissociation (CID) of solvent‐coordinated dipositive uranyl and plutonyl ions generated by electrospray ionization. Fundamental differences between the ETD and CID processes are apparent, as are differences between the intrinsic chemistries of uranyl and plutonyl. Reduction of both charge and oxidation state, which is inherent in ETD activation of [AnVIO2(CH3COCH3)4]2+, [AnVIO2(CH3CN)4]2, [UVIO2(CH3COCH3)5]2+ and [UVIO2(CH3CN)5]2+ (An = U or Pu), is accompanied by ligand loss. Resulting low‐coordinate uranyl(V) complexes add O2, whereas plutonyl(V) complexes do not. In contrast, CID of the same complexes generates predominantly doubly‐charged products through loss of coordinating ligands. Singly‐charged CID products of [UVIO2(CH3COCH3)4,5]2+, [UVIO2(CH3CN)4,5]2+ and [PuVIO2(CH3CN)4]2+ retain the hexavalent metal oxidation state with the addition of hydroxide or acetone enolate anion ligands. However, CID of [PuVIO2(CH3COCH3)4]2+ generates monopositive plutonyl(V) complexes, reflecting relatively more facile reduction of PuVI to PuV. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
9.
Butirosin, an aminoglycoside antibiotic produced by Bacillus circulans, bears the unique (S)-4-amino-2-hydroxybutyrate (AHBA) side chain, which protects the antibiotic from several common resistance mechanisms. The AHBA side chain is advantageously incorporated into clinically valuable antibiotics such as amikacin and arbekacin by synthetic methods. Therefore, it is of significant interest to explore the biosynthetic origins of this useful moiety. We report here that the AHBA side chain of butirosin is transferred from the acyl carrier protein (ACP) BtrI to the parent aminoglycoside ribostamycin as a gamma-glutamylated dipeptide by the ACP:aminoglycoside acyltransferase BtrH. The protective gamma-glutamyl group is then cleaved by BtrG via an uncommon gamma-glutamyl cyclotransferase mechanism. The application of this pathway to the in vitro enzymatic production of novel AHBA-bearing aminoglycosides is explored with encouraging implications for the preparation of unnatural antibiotics via directed biosynthesis. 相似文献
10.
Electron attachment step in electron capture dissociation (ECD) and electron transfer dissociation (ETD) 总被引:1,自引:0,他引:1
Anusiewicz I Berdys-Kochanska J Simons J 《The journal of physical chemistry. A》2005,109(26):5801-5813
We have made use of classical dynamics trajectory simultions and ab initio electronic structure calculations to estimate the cross sections with which electrons are attached (in electron capture dissociation (ECD)) or transferred (in electron transfer dissociation (ETD)) to a model system that contained both an S-S bond that is cleaved and a -NH(3)(+) positively charged site. We used a Landau-Zener-Stueckelberg curve-crossing approximation to estimate the ETD rates for electron transfer from a CH(3)(-) anion to the -NH(3)(+) Rydberg orbital or the S-S sigma* orbital. We draw conclusions about ECD from our ETD results and from known experimental electron-attachment cross sections for cations and sigma-bonds. We predict the cross section for ETD at the positive site of our model compound to be an order of magnitude larger than that for transfer to the Coulomb-stabilized S-S bond site. We also predict that, in ECD, the cross section for electron capture at the positive site will be up to 3 orders of magnitude larger than that for capture at the S-S bond site. These results seem to suggest that attachment to such positive sites should dominate in producing S-S bond cleavage in our compound. However, we also note that cleavage induced by capture at the positive site will be diminished by an amount that is related to the distance from the positive site to the S-S bond. This dimunition can render cleavage through Coulomb-assisted S-S sigma* attachment competitive for our model compound. Implications for ECD and ETD of peptides and proteins in which SS or N-C(alpha) bonds are cleaved are also discussed, and we explain that such events are most likely susceptible to Coulomb-assisted attachment, because the S-S sigma* and C=O pi* orbitals are the lowest-lying antibonding orbitals in most peptides and proteins. 相似文献
11.
Hisham Ben Hamidane Diego Chiappe Ralf Hartmer Aleksey Vorobyev Marc Moniatte Yury O. Tsybin 《Journal of the American Society for Mass Spectrometry》2009,20(4):567-575
We decoupled electron-transfer dissociation (ETD) and collision-induced dissociation of charge-reduced species (CRCID) events
to probe the lifetimes of intermediate radical species in ETD-based ion trap tandem mass spectrometry of peptides. Short-lived
intermediates formed upon electron transfer require less energy for product ion formation and appear in regular ETD mass spectra,
whereas long-lived intermediates require additional vibrational energy and yield product ions as a function of CRCID amplitude.
The observed dependencies complement the results obtained by double-resonance electron-capture dissociation (ECD) Fourier
transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and ECD in a cryogenic ICR trap. Compared with ECD FT-ICR
MS, ion trap MS offers lower precursor ion internal energy conditions, leading to more abundant charge-reduced radical intermediates
and larger variation of product ion abundance as a function of vibrational post-activation amplitude. In many cases decoupled
CRCID after ETD exhibits abundant radical c-type and even-electron z-type ions, in striking contrast to predominantly even-electron c-type and radical z-type ions in ECD FT-ICR MS and especially activated ion-ECD, thus providing a new insight into the fundamentals of ECD/ETD. 相似文献
12.
13.
《Tetrahedron: Asymmetry》1999,10(12):2373-2380
Five chiral α-d-glucose-based monoaza-15-crown-5 ethers with a phosphonoalkyl side chain 5a–e have been synthesized. The substituent at the nitrogen atom has a major influence on the cation extraction ability of the azacrown. The new lariat ethers 5a–e show significant asymmetric induction as phase transfer catalysts in the Michael addition of 2-nitropropane to chalcone. 相似文献
14.
Håkansson K Hudgins RR Marshall AG O'Hair RA 《Journal of the American Society for Mass Spectrometry》2003,14(1):23-41
We report electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) of doubly protonated and protonated/alkali metal ionized oligodeoxynucleotides. Mass spectra following ECD of the homodeoxynucleotides polydC, polydG, and polydA contain w or d "sequence" ions. For polydC and polydA, the observed fragments are even-electron ions, whereas radical w/d ions are observed for polydG. Base loss is seen for polydG and polydA but is a minor fragmentation pathway in ECD of polydC. We also observe fragment ions corresponding to w/d plus water in the spectra of polydC and d(GCATGC). Although the structure of these ions is not clear, they are suggested to proceed through a pentavalent phosphorane intermediate. The major fragment in ECD of d(GCATGC) is a d ion. Radical a- or z-type fragment ions are observed in most cases. IRMPD primarily results in base loss, but backbone fragmentation is also observed. IRMPD provides more sequence information than ECD, but the spectra are more complex due to extensive base and water losses. It is proposed that the smaller degree of sequence coverage in ECD, with fragmentation mostly occurring close to the ends of the molecules, is a consequence of a mechanism in which the electron is captured at a P=O bond, resulting in a negatively charged phosphate group. Consequently, at least two protons (or alkali metal cations) must be present to observe a w or d fragment ion, a requirement that is less likely for small fragments. 相似文献
15.
Loss of side chains from different amino acid residues in a model peptide framework of RGGGXGGGR under electron capture dissociation conditions were systematically investigated, where X represents one of the twenty common amino acid residues. The alpha-carbon radical cations initially formed by N-Calpha cleavage of peptide ions were shown to undergo secondary dissociation through losses of even-electron and/or odd-electron side-chain moieties. Among the twenty common amino acid residues studied, thirteen of them were found to lose their characteristic side chains in terms of odd-electron neutral fragments, and nine of them were found to lose even-electron neutral side chains. Several generalized dissociation pathways were proposed and were evaluated theoretically with truncated leucine-containing models using ab initio calculations at B3-PMP2/6-311++G(3df,2p)//B3LYP/6-31++G(d,p) level. Elimination of odd-electron side chain was associated with the initial abstraction of the hydrogen from the alpha-carbon bearing the side chain by the N-terminal alpha-carbon radical. Subsequent formation of alpha-beta carbon-carbon double bond leads to the elimination of the odd-electron side chain. The energy barrier for this reaction pathway was 89 kJmol-1. This reaction pathway was 111 kJmol-1 more favorable than the previously proposed pathway involving the formation of cyclic lactam. Elimination of even-electron side chain was associated with the initial abstraction of the gamma-hydrogen from the side chain by the N-terminal alpha-carbon radical. Subsequent formation of beta-gamma carbon-carbon double bond leads to the elimination of the even-electron side chain and the migration of the radical center to the alpha-carbon. The energy barrier for this fragmentation reaction was found to be 50 kJmol-1. 相似文献
16.
Wolff JJ Amster IJ Chi L Linhardt RJ 《Journal of the American Society for Mass Spectrometry》2007,18(2):234-244
The first application of electron detachment dissociation (EDD) to carbohydrates is presented. The structural characterization
of glycosaminoglycan (GAG) oligosaccharides by mass spectrometry is a longstanding problem because of the lability of these
acidic, polysulfated carbohydrates. Doubly-charged negative ions of four GAG tetrasaccharides are examined by EDD, collisionally
activated dissociation (CAD), and infrared multiphoton dissociation (IRMPD). EDD is found to produce information-rich mass
spectra with both cross ring and glycosidic cleavage product ions. In contrast, most of the product ions produced by CAD and
IRMPD result from glycosidic cleavage. EDD shows great potential as a tool for locating the sites of sulfation and other modifications
in glycosaminoglycan oligosaccharides. 相似文献
17.
The flexibility of the side chain and effects of conformational changes in the backbone on hydration and proton transfer in the short-side-chain (SSC) perfluorosulfonic acid fuel cell membrane have been investigated through first principles based molecular modelling studies. Potential energy profiles determined at the B3LYP/6-31G(d,p) level in the two pendant side chain fragments: CF(3)CF(-O(CF(2))(2)SO(3)H)-(CF(2))(7)-CF(-O(CF(2))(2)SO(3)H)CF(3) indicate that the largest CF(2)-CF(2) rotational barrier along the backbone is nearly 28.9 kJ mol(-1) higher than the minimum energy staggered trans conformation. Furthermore, the calculations reveal that the stiffest portion of the side chain is near to its attachment site on the backbone, with CF-O and O-CF(2) barriers of 38.1 and 28.0 kJ mol(-1), respectively. The most flexible portion of the side chain is the carbon-sulfur bond, with a barrier of only 8.8 kJ mol(-1). Extensive searches for minimum energy structures (at the B3LYP/6-311G(d,p) level) of the same polymeric fragment with 4-7 explicit water molecules reveal that the perfluorocarbon backbone may adopt either an elongated geometry, with all carbons in a trans configuration, or a folded conformation as a result of the hydrogen bonding of the terminal sulfonic acids with the water. These electronic structure calculations show that the fragments displaying the latter 'kinked' backbone possessed stronger binding of the water to the sulfonic acid groups, and also undergo proton dissociation with fewer water molecules. The calculations point to the importance of the flexibility in both the backbone and side chains of PFSA membranes to effectively transport protons under low humidity conditions. 相似文献
18.
Emphasizing dissociation, the energy transfer Δ? to a diatomic Morse oscillator in state n by collision with an atom is treated in a one-dimens 相似文献
19.
Ammonium radicals derived from protonated beta-alanine N-methyl amide (BANMA) were generated by femtosecond collisional electron transfer to gas-phase cations prepared by chemical ionization and electrospray. Regardless of the mode of precursor ion preparation, the radicals underwent complete dissociation on the time scale of 5.15 micros. Deuterium isotope labeling and product analysis pointed out several competitive and convergent dissociation pathways that were not completely resolved by experiment. Ab initio calculations, which were extrapolated up to the CCSD(T)/6-311++G(3df,2p) level of theory, provided the proton affinity and gas-phase basicity of BANMA as PA = 971 kJ mol-1 and GB = 932 kJ mol-1 to form the most stable ion structure 1c+ in which the protonated ammonium group was internally solvated by hydrogen bonding to the amide carbonyl. Ion 1c+ was calculated to have an adiabatic recombination energy of 3.33 eV to form ammonium radical 1c*. The potential energy surface for competitive and consecutive isomerizations and dissociations of 1c* was investigated at correlated levels of theory and used for Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. RRKM unimolecular rate constants suggested that dissociations starting from the ground electronic state of radical 1c* were dominated by loss of an ammonium hydrogen atom. In contrast, dissociations starting from the B excited state were predicted to proceed by reversible isomerization to an aminoketyl radical (1f*). The latter can in part dissociate by N-Calpha bond cleavage leading to the loss of the amide methyl group. This indicates that apparently competitive dissociations observed for larger amide and peptide radicals, such as backbone cleavages and losses of side-chain groups, may originate from different electronic states and proceed on different potential energy surfaces. 相似文献
20.
Time-of-flight mass spectrometry and two-dimensional coincidence techniques have been used to determine, for the first time, the relative precursor-specific partial ionization cross sections following electron-methane collisions. Precursor-specific partial ionization cross sections quantify the contribution of single, double, and higher levels of ionization to the partial ionization cross section for forming a specific ion (e.g. CH(+)) following electron ionization of methane. Cross sections are presented for the formation of H(+), H(2)(+), C(+), CH(+), CH(2)(+), and CH(3)(+), relative to CH(4)(+), at ionizing electron energies from 30 to 200 eV. We can also reduce our dataset to derive the relative partial ionization cross sections for the electron ionization of methane, for comparison with earlier measurements. These relative partial ionization cross sections are in good agreement with recent determinations. However, we find that there is significant disagreement between our partial ionization cross sections and those derived from earlier studies. Inspection of the values of our precursor-specific partial ionization cross sections shows that this disagreement is due to the inefficient collection of energetic fragment ions in the earlier work. Our coincidence experiments also show that the lower energy electronic states of CH(4)(2+) populated by electron double ionization of CH(4) at 55 eV are the same (ground (3)T(1), first excited (1)E(1)) as those populated by 40.8 eV photoionization. The (3)T(1) state dissociating to form CH(3)(+) + H(+) and CH(2)(+) + H(2)(+) and the (1)E(1) to form CH(2)(+) + H(+) and CH(+) + H(+). At this electron energy, we also observe population of the first excited triplet state of CH(4)(2+) ((3)T(2)) which dissociates to both CH(2)(+) + H(+) + H and CH(+) + H(+) + H(2). 相似文献