首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 951 毫秒
1.
An attempt has been made to realize p-ZnO by directly doping (codoping) GaP into ZnO thin films. GaP codoped ZnO thin films of different concentrations (1, 2 and 4 mol%) have been grown by RF magnetron sputtering. The grown films on sapphire substrate have been characterized by X-ray diffraction (XRD), Hall measurement, Photoluminescence (PL) and Energy dispersive spectroscopy (EDS) to validate the p-type conduction. XRD result shows that all the films have been preferentially oriented along (0 0 2) orientation. The decrease of full-width at half maximum (FWHM) with increase in GaP doping depicts the decrease in native donor defects. Hall measurement shows that among the three films, 2 and 4 mol% GaP doped ZnO shows p-conductivity due to the sufficient amount of phosphorous incorporation. It has been found that low resistivity (2.17 Ωcm) and high hole concentration (1.8×1018 cm−3) for 2% GaP codoped ZnO films due to best codoping. The red shift in near-band-edge (NBE) emission and donar-acceptor-pair (DAP) and neutral acceptor bound recombination (A°X) observed by room temperature and low temperature (10 K) PL, respectively, well acknowledged the formation of p-ZnO. The incorporated phosphorous in the film has been also confirmed by EDS analysis.  相似文献   

2.
N-doped ZnO films were deposited by RF magnetron sputtering in N2/Ar gas mixture and were post-annealed at different temperatures (Ta) ranging from 400 to 800 °C in O2 gas at atmospheric pressure. The as-deposited and post-annealed films were characterized by their structural (XRD), compositional (SIMS, XPS), optical (UV-vis-NIR spectrometry), electrical (Hall measurements), and optoelectronic properties (PL spectra). The XRD results authenticate the improvement of crystallinity following post-annealing. The weak intensity of the (0 0 2) reflection obtained for the as-deposited N-doped ZnO films was increased with the increasing Ta to become the preferred orientation at higher Ta (800 °C). The amount of N-concentration and the chemical states of N element in ZnO films were changed with the Ta, especially above 400 °C. The average visible transmittance (400-800 nm) of the as-deposited films (26%) was increased with the increasing Ta to reach a maximum of 75% at 600 °C but then decreased. In the PL spectra, A0X emission at 3.321 eV was observed for Ta = 400 °C besides the main D0X emission. The intensity of the A0X emission was decreased with the increasing Ta whereas D0X emission became sharper and more optical emission centers were observed when Ta is increased above 400 °C.  相似文献   

3.
Influence of annealing temperature on the properties of Sb-doped ZnO thin films were studied. Hall measurement results indicated that the Sb-doped ZnO annealed at 950 °C was p-type conductivity. X-ray diffraction (XRD) results indicated that the Sb-doped ZnO thin films prepared at the experiments are high c-axis oriented. It was worth noting that p-type sample had the worst crystallinity. The measurements of low-temperature photoluminescence (PL) spectra indicate that the sample annealed at the temperatures of 950 °C showed strong acceptor-bound exciton (A0X) emission, and confirmed that it is related to Sb-doping by comparing with the undoped ZnO low-temperature PL spectrum.  相似文献   

4.
Phosphorus (P)-doped ZnO thin films with amphoteric doping behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering with various argon/oxygen gas ratios. Control of the electrical types in the P-doped ZnO films was achieved by varying the gas ratio without post-annealing. The P-doped ZnO films grown at a argon/oxygen ratio of 3/1 showed p-type conductivity with a hole concentration and hole mobility of 1.5 × 1017 cm−3 and 2.5 cm2/V s, respectively. X-ray diffraction showed that the ZnO (0 0 0 2) peak shifted to lower angle due to the positioning of P3− ions with a larger ionic radius in the O2− sites. This indicates that a p-type mechanism was due to the substitutional PO. The low-temperature photoluminescence of the p-type ZnO films showed p-type related neutral acceptor-bound exciton emission. The p-ZnO/n-Si heterojunction light emitting diode showed typical rectification behavior, which confirmed the p-type characteristics of the ZnO films in the as-deposited status, despite the deep-level related electroluminescence emission.  相似文献   

5.
We report the influence of Al concentration on electrical, structural, optical and morphological properties of Al-As codoped p-ZnO thin films using RF magnetron sputtering. Al-As codoped p-ZnO films with different Al concentrations were fabricated using As back diffusion from the GaAs substrate and sputtering Al2O3 mixed ZnO targets (1, 2 and 4 at%). The grown films were investigated by Hall effect measurement, X-ray diffraction (XRD), electron probe microanalysis (EPMA), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and atomic force microscopy (AFM) to study the electrical, structural, optical and morphological properties of the films. From the XRD, it was observed that both full-width at half-maximum (FWHM) and c-axis lattice constant have similar trends with respect to Al concentration. Hall measurements showed that the hole concentration increases as the Al concentration increases from 1015 to 1020 cm−3. The increase in hole concentration upon codoping was supported by the red shift in the near-band-edge (NBE) emission observed from room temperature PL spectra. The proposed p-type mechanism due to AsZn-2VZn complex was confirmed by low temperature PL and XPS analysis. The low FWHM, resistivity and peak-to-valley roughness observed by XRD, Hall measurement and AFM, respectively, suggest that 1 at% Al-doped ZnO:As film is the best codoped film.  相似文献   

6.
The effects of annealing on the chemical states of N dopant, electrical, and optical properties of N-doped ZnO film grown by molecular beam epitaxy (MBE) are investigated. Both the as-grown ZnO:N film and the film annealed in N2 are of n-type conductivity, whereas the conductivity converts into p-type conductivity for the film annealed in O2. We suggest that the transformation of conductivity is ascribed to the change in ratio of the N molecular number on O site (N2)O to the N atom number on O site (NO) in ZnO:N films under the various annealed atmosphere. For the ZnO:N film annealed in N2, the percentage content of (N2)O is larger than that of NO, i.e.the ratio >1, resulting in the n-type conductivity. However, in the case of the ZnO:N film annealed in O2, the percentage content of (N2)O is fewer than that of NO, i.e., the ratio <1, giving rise to the p-type conductivity. There is an obvious difference between low-temperature (80K) PL spectra of ZnO:N film annealed in N2 and that of ZnO:N film annealed in O2. An emission band located at 3.358eV is observed in the spectra of the ZnO:N film after annealed in N2, this emission band is due to donor-bound exciton (D0X). After annealed in O2, the PL of the donor-bound exciton disappeared, an emission band located at 3.348eV is observed, this emission band is assigned to acceptor-bound exciton (A0X).  相似文献   

7.
Uniform ZnO nanobelts (NBs) were synthesized by a facile thermal evaporation method. Recombination mechanism of acceptor-related emissions in Sb doped ZnO NBs was investigated by temperature-dependent photoluminescence (PL) spectra. UV near-band-edge (NBE) emissions were dominant by acceptor-bound exciton (A0X) at 3.358 eV and free electron-to-acceptor (FA) at 3.322 eV transitions at 81 K. Studies on A0X intensity showed a quenching channel, the thermal dissociations of A0X to a free exciton and electron hole pair with the temperature increase. The active energy of A0X was estimated to be 19 meV using thermal quenching formula. The acceptor ionization energy was calculated to be 190 meV using Haynes rule. These results were very similar to those of antimony or phosphorus doped ZnO films.  相似文献   

8.
Photoluminescence (PL) spectra of nitrogen-doped ZnO films (ZnO:N films) grown epitaxially on n-type ZnO single crystal substrates by using the plasma-assisted reactive evaporation method were measured at 5 K. In PL spectra, free exciton emission at about 3.375 eV was very strong and emissions at 3.334 and 3.31 eV were observed. These two emissions are discussed in this paper. The nitrogen concentration in ZnO:N films measured by secondary ion mass spectroscopy was 1019-20 cm−3. Current-voltage characteristics of the junction consisting of an n-type ZnO single crystal substrate and ZnO:N film showed good rectification. Also, ultraviolet radiation and visible light were emitted from this junction under a forward bias at room temperature. It is therefore thought that ZnO:N films have good crystallinity and that doped nitrogen atoms play a role as acceptors in ZnO:N films to form a good pn junction. From these phenomena and the excitation intensity dependency of PL spectra, emissions at 3.334 and 3.31 eV were assigned to neutral acceptor-bound exciton (A0X) emission and a donor-acceptor pair (DAP) emission due to doped nitrogen, respectively.  相似文献   

9.
N-In codoped ZnO thin films were prepared by ion beam enhanced deposition method (IBED) and were annealed in nitrogen and oxygen ambient after deposition. The influence of post-annealing on structure, electrical and optical properties of thin films were investigated. As-deposited and all post-annealed samples showed preferential orientation along (0 0 2) plane. Electrical property studies indicated that the as-deposited ZnO film showed p-type with a sheet resistance of 67.5 kΩ. For ZnO films annealed in nitrogen with the annealing temperature increasing from 400 to 800 °C, the conduction type of the ZnO film changed from p-type to n-type. However, for samples annealed in oxygen the resistance increased sharply even at a low annealing temperature of 400 °C and the conduction type did not change. Room temperature PL spectra of samples annealed in N2 and in O2 showed UV peak located at 381 and 356 nm, respectively.  相似文献   

10.
n-ZnO:Al/n ?-ZnO/i-MgO/n-GaN heterostructured diodes have been fabricated by radio frequency magnetron sputtering. The electroluminescence (EL) of the n-ZnO:Al/n ?-ZnO/i-MgO/n-GaN diodes has been investigated. All EL spectra are dominated by ultraviolet (UV) emission peaked at around 368 nm. However, EL performances of the devices can be tuned through controlling the electrical parameters of ZnO:Al films. With the variation of the ZnO:Al films, EL spectra could evolve into random lasing action from conventional EL. The electrical parameters of the corresponding ZnO:Al films were researched, and the related UV emission mechanism is discussed in terms of the energy-band theory of the heterojunctions.  相似文献   

11.
B-N codoped p-type ZnO thin films have been realized by radio frequency (rf) magnetron sputtering using a mixture of argon and oxygen as sputtering gas. Types of conduction and electrical properties in codoped ZnO films were found to be dependent on oxygen partial pressure ratios in the sputtering gas mixture. When oxygen partial pressure ratio was 70%, the codoped ZnO film showed p-type conduction and had the best electrical properties. Additionally, the p-ZnO/n-Si heterojunction showed a clear p-n diode characteristic. XRD results indicate that the B-N codoped ZnO film prepared in 70% oxygen partial pressure ratio has high crystal quality with (0 0 2) preferential orientation. Meanwhile, the B-N codoped ZnO film has high optical quality and displays the stronger near band edge (NBE) emission in the temperature-dependent photoluminescence spectrum, the acceptor energy level was estimated to be located at 125 meV above the valence band.  相似文献   

12.
N-doped ZnO films were produced using N2 as N source by metal-organic chemical vapor deposition (MOCVD) system which has been improved with radio-frequency (RF)-assisted equipments. The data of secondary ion mass spectroscopy (SIMS) indicate that the concentration of N in N-doped ZnO films is around 5 × 1020 cm−3, implying that sufficient incorporation of N into ZnO can be obtained by RF-assisted equipment. On this basis, the structural, optical and electrical properties of Al-N codoped ZnO films were studied. Then, the effect of RF power on crystal quality, surface morphologies, optical properties was analyzed using X-ray diffraction, atomic force microscopy and photo-luminescence methods. The results illustrate that the RF plasma is the key factor for the improvement of crystal quality. Then the observation of A0X recombination associated with NO acceptor in low-temperature PL spectrum proved that some N atoms have occupied the positions of O atoms in ZnO films. Hall measurements shown that p-type ZnO film deposited on quartz glasses was obtained when RF power was 150 W for the Al-N codoped ZnO films, while the resistivity of N-doped ZnO films was rather high. Compared with the Al-doped ZnO film, the obviously increased resistivity of codoped films indicates that the formation of NO acceptors compensate some donors in ZnO films effectively.  相似文献   

13.
Polycrystalline ZnO thin films codoped with Na and N were obtained by chemical bath deposition. The structural characteristic and the optical properties of the rapid thermal annealed ZnO:(Na,N) films were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer (EDS), Raman spectrum and room-temperature photoluminescence. After RTA treatment, the XRD spectra showed a continuous decrease of the full- width at half-maximum (FWHM) of the (0 0 2) diffraction peak of the ZnO:(Na,N) film. The Raman spectra revealed that the intensity of the mode around 582 cm−1 increased with the increase of the RTA temperature. The PL spectra showed different trends in the UV luminescence of ZnO:(Na,N) films after RTA treatments.  相似文献   

14.
The effect of annealing on the 3.31 eV (A line) emission in ZnO nanorods is studied in detail by temperature-dependent photoluminescence (PL). Annealing results in obvious changes in peak energy and lineshape of the A line, indicating different luminescence origin in the as-grown and annealed ZnO nanorods. In the as-grown nanorods, the A line is a result of competition between free-to-neutral acceptor (FA) transition and the first longitude optical phonon replica of free exciton (FX-1LO) recombination. While for the annealed nanorods, FA transition disappears and the A line is attributed to FX-1LO only. In combination with trace impurity analysis, the results allow us to conclude that the acceptor involved in the FA transition is stacking faults rather than unintentional acceptor impurities.  相似文献   

15.
Ag-doped ZnO (ZnO:Ag) thin films were grown on glass substrates by E-beam evaporation technique. The structural, electrical and optical properties of the films were investigated as a function of annealing temperature. The films were subjected to post annealing at different temperatures in the range of 350-650 °C in an air ambient. All the as grown and annealed films at temperature of 350 °C showed p-type conduction. The films lost p-type conduction after post annealing treatment temperature of above 350 °C, suggesting a narrow post annealing temperature window for the fabrication of p-type ZnO:Ag films. ZnO:Ag film annealed at 350 °C revealed lowest resistivity of 7.25 × 10−2 Ω cm with hole concentration and mobility of 5.09 × 1019 cm−3 and 1.69 cm2/V s, respectively. Observation of a free-to-neutral-acceptor (e,Ao) and donor-acceptor-pair (DAP) emissions in the low temperature photoluminescence measurement confirms p-type conduction in the ZnO:Ag films.  相似文献   

16.
The optical properties of ZnO grown on (1 0 0) GaAs substrate using metalorganic chemical vapor deposition are investigated by photoluminescence (PL) spectroscopy. Postgrowth annealing in nitrogen and oxygen was performed for different times and temperatures in order to incorporate As from the substrate into the ZnO thin films. The PL spectra of the samples annealed in different ambients reveal that the effect of As diffusion into the ZnO thin films is more pronounced when the annealing is performed in oxygen at 550 °C. The 11 K PL spectra show the appearance of a transition at ∼3.35 eV after annealing in oxygen at 550 °C for 1 h. A further increase in the annealing temperature leads to the disappearance of this line, while for annealing times longer than 2 h at 550 °C, it is no longer prominent. The increase in intensity of this new transition is also accompanied by the enhancement of radiative centers related to structural defects, such as the stacking fault-related transition at 3.31 eV and the Y-line. Temperature dependent PL illustrates the excitonic nature of the new transition at ∼3.35 eV, which is therefore assigned to (A0, X) transition, where the acceptor is possibly the 2VZn-AsZn complex, with an activation energy EA in the range of 160-240 meV. Furthermore, the enhancement of the radiative centers related to structural defects is regarded as evidence that As atoms tend to segregate in the vicinity of structural defects to relieve local strain.  相似文献   

17.
《Composite Interfaces》2013,20(8):623-634
An attempt has been made to fabricate p-ZnO thin films from the ZrN mixed ZnO targets by RF magnetron sputtering. The targets of different ZrN concentrations (0, 1, 2, and 4?mol%) have been prepared by solid-state reaction route. The ZrN-codoped ZnO films grown on semi-insulating Si (100) substrates have been characterized by X-ray diffraction (XRD), photoluminescence (PL), Hall effect measurement, time-of-flight secondary ion mass spectrometer (ToF-SIMS), and atomic force microscopy (AFM). XRD studies reveal that all films are oriented along (002) plane. The Hall measurements showed p-conductivity for 1 and 2?mol% ZrN-codoped ZnO films. Further, it has been found that 1?mol% ZrN-codoped film has low resistivity (7.5?×?10?2?Ω?cm) and considerable hole concentration (8.2?×?1018?cm?3) by optimum incorporation of nitrogen due to best codoping. The red shift in near-band-edge emission observed from PL well acknowledged the p-conduction in 1 and 2?mol% ZrN-codoped ZnO film. The incorporation of N and Zr atoms in the ZnO matrix has been confirmed by ToF-SIMS analysis. The increase in peak to valley roughness (R pv) with increase of doping concentration has been observed from AFM analysis. ZnO homojunction has also been fabricated with the best codoped p-ZnO film and it showed typical rectification behavior of a diode. The junction parameters have also been determined for the fabricated homojunction.  相似文献   

18.
The ZnO:N films are prepared by a wet chemical method. The temperature-dependent photoluminescence (PL) is used to investigate those ZnO: N films. Due to the introduction of nitrogen atoms into ZnO film, another phase appears in the ZnO film, which can release the stress and improve the film quality. As a result, a neutral donor-bound exciton (D0X) emission peak is shown in low temperature PL spectrum. With the increasing temperature, the D0X line gradually loses its intensity and shifts to 3.30 eV, which is consistent with the well-known conversion from bound exciton to free exciton at elevated temperatures. Then, due to the thermal quenching effect, the D0X line vanishes in room temperature. In addition, no shift is shown in the location of visible band emission and only the intensity decreases with the increasing temperature.  相似文献   

19.
Sc-doped ZnO transparent conductive films are deposited on glass substrates by radio-frequency sputtering. The influence of post-annealing on the structural, morphologic, electrical, and optical properties of the films is investigated by energy dispersion X-ray spectroscopy, X-ray diffraction, Hall measurement, and optical transmission spectroscopy. The experimental results show that these films are polycrystalline with a preferred [0 0 1] orientation. The lowest resistivity of 2.6 × 10−4 Ω cm is obtained from the film annealed at 500 °C. The average optical transmittance of the films is over 90%. These results suggest that Sc-doped ZnO is a good candidate for fabricating high performance transparent conductive films.  相似文献   

20.
P doped ZnO films were grown on quartz by radio frequency-magnetron sputtering method using a ZnO target mixed with 1.5 at% P2O5 in the atmosphere of Ar and O2 mixing gas. The as-grown P doped ZnO film showed n-type conductivity, which was converted to p-type after 800 °C annealing in Ar gas. The P doped ZnO has a resistivity of 20.5 Ω cm (p∼2.0×1017 cm−3) and a Hall mobility of 2.1 cm2 V−1 s−1. XRD measurement indicated that both the as-grown and the annealed P doped ZnO films had a preferred (0 0 2) orientation. XPS study agreed with the model that the PZn-2VZn acceptor complex was responsible for the p-type conductivity as found in the annealed P-doped ZnO. Temperature-dependent photoluminescence (PL) spectrum showed that the dominant band is located at 3.312 eV, which was attributed to the free electronic radiative transition to neutral acceptor level (FA) in ZnO. The PZn-2VZn acceptor complex level was estimated to be at EV=122 meV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号