首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of changes in Li content on the structural property of sol-gel Li-doped ZnO films was investigated in this study. The observed changes of the Li incorporation-induced strain along c-axis are closely related to the different ratios between the concentrations of Li interstitials (Lii) and Li substituting for Zn (LiZn) in the films. According to the observed results from X-ray diffraction (XRD) and photoluminescence measurements, we found that the domination of the dissociative mechanism in the Li-doped ZnO films led to transformation from LiZn to Lii, involving the formation of Zn vacancies (VZn). In addition, the interaction between these defects (that is, LiZn, Lii, VZn and oxygen vacancy) and the crystal structure may lead to the abnormal shift of the (0 0 2) diffraction peak position determined from XRD measurements.  相似文献   

2.
ZnO thin films were epitaxially grown on sapphire (0 0 0 1) substrates by radio frequency magnetron sputtering. ZnO thin films were then annealed at different temperatures in air and in various atmospheres at 800 °C, respectively. The effect of the annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL). A strong (0 0 2) diffraction peak of all ZnO thin films shows a polycrystalline hexagonal wurtzite structure and high preferential c-axis orientation. XRD and AFM results reveal that the better structural quality, relatively smaller tensile stress, smooth, uniform of ZnO thin films were obtained when annealed at 800 °C in N2. Room temperature PL spectrum can be divided into the UV emission and the Visible broad band emission. The UV emission can be attributed to the near band edge emission (NBE) and the Visible broad band emission can be ascribed to the deep level emissions (DLE). By analyzing our experimental results, we recommend that the deep-level emission correspond to oxygen vacancy (VO) and interstitial oxygen (Oi). The biggest ratio of the PL intensity of UV emission to that of visible emission (INBE/IDLE) is observed from ZnO thin films annealed at 800 °C in N2. Therefore, we suggest that annealing temperature of 800 °C and annealing atmosphere of N2 are the most suitable annealing conditions for obtaining high quality ZnO thin films with good luminescence performance.  相似文献   

3.
The effect of annealing on the 3.31 eV (A line) emission in ZnO nanorods is studied in detail by temperature-dependent photoluminescence (PL). Annealing results in obvious changes in peak energy and lineshape of the A line, indicating different luminescence origin in the as-grown and annealed ZnO nanorods. In the as-grown nanorods, the A line is a result of competition between free-to-neutral acceptor (FA) transition and the first longitude optical phonon replica of free exciton (FX-1LO) recombination. While for the annealed nanorods, FA transition disappears and the A line is attributed to FX-1LO only. In combination with trace impurity analysis, the results allow us to conclude that the acceptor involved in the FA transition is stacking faults rather than unintentional acceptor impurities.  相似文献   

4.
ZnO properties were investigated as a function of AlN buffer layer thickness (0–100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.  相似文献   

5.
The activity for non-radiative recombination at dislocations on (0 0 0 1) basal planes was examined in wurtzite ZnO bulk single crystals. In panchromatic cathodoluminescence intensity maps, the dislocations did not exhibit apparent contrast when they were introduced at elevated temperatures of 923–1073 K, while the dislocations introduced at low temperatures (below 623 K) were observed as dark bands. It was suggested that the dislocations formed complexes involving point defects, via the thermal migration of point defects at elevated temperatures, resulting in the suppression of the recombination activity. The complexes did not influence the existing emission lines in pre-dislocated crystals.  相似文献   

6.
The mechanical properties of epitaxial ZnO thin films grown on (0 0 0 1) sapphire substrate were investigated by nanoindentation with a Berkovich tip and compared with that of bulk ZnO single crystal. In all indents on ZnO film a single discontinuity (‘pop-in’) in the load versus indentation depth data was observed at a specific depth of between 13 and 16 nm. In bulk ZnO, however only 65% of indents showed pop-in event at a specific depth of between 12 and 20 nm. The mechanism responsible for the ‘pop-in’ event in the epitaxial ZnO thin films as well as in bulk ZnO was attributed to the sudden propagation of dislocations, which had been pinned down by pre-existing defects, along the pyramidal and basal {0 0 0 1} planes (cross slip). The elastic modulus and hardness of the epitaxial ZnO thin films were determined to be 154 ± 5 and 8.7 ± 0.2 GPa, respectively, at an indentation depth of 30 nm.  相似文献   

7.
Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.  相似文献   

8.
We have investigated modifications of sapphire (0 0 0 1) surface with and without coating, induced by a single laser pulse with a 1054 nm wavelength, 2.2 s duration, 7.75 mm spot and energy of 20-110 J. A holographic optical element was used for smoothing the drive beam spatially, but it induced small hotspots which initiated damage on the uncoated and coated surfaces. The individual damage effects of hotspots became less pronounced at high fluences. Due to high temperature and elevated non-hydrostatic stresses upon laser irradiation, damage occurred as fracture, spallation, basal and rhombohedral twinning, melting, vitrification, the formation of nanocrystalline phases, and solid-solid phase transition. The extent of damage increased with laser fluences. The formation of regular linear patterns with three-fold symmetry ( directions) upon fracture was due to rhombohedral twinning. Nanocrystalline -Al2O3 formed possibly from vapor deposition on the coated surface and manifested linear, triangular and spiral growth patterns. Glass and minor amounts of -Al2O3 also formed from rapid quenching of the melt on this side. The - to -Al2O3 transition was observed on the uncoated surface in some partially spalled alumina, presumably caused by shearing. The nominal threshold for laser-induced damage is about 47 J cm−2 for these laser pulses, and it is about 94 J cm−2 at the hotspots.  相似文献   

9.
Zinc oxide nanopencil arrays were synthesized on pyramidal Si(1 0 0) substrates via a simple thermal evaporation method. Their field emission properties have been investigated: the turn-on electric field (at the current density of 10 μA/cm2) was about 3.8 V/μm, and the threshold electric field (at the current density of 1 mA/cm2) was 5.8 V/μm. Compared with similar structures grown on flat Si substrates, which were made as references, the pyramidal Si-based ZnO nanopencil arrays appeared to be superior in field emission performance, thus the importance of the non-flat substrates has been accentuated. The pyramidal Si substrates could not only suppress the field screening effect but also improve the field enhancement effect during the field emission process. These findings indicated that using non-flat substrates is an efficient strategy to improve the field emission properties.  相似文献   

10.
The Zinc oxide (ZnO) microcrystal is formed out of irradiated powder sample by a continuous-wave 532-nm laser with a high power of about 200 mW, and the microcrystal formation process is monitored by in situ Raman spectroscopy simultaneously. Scanning electron microscope image shows that multi-shaped ZnO microcrystal, including nano-rods and nano-flakes, is obtained near the brim of laser irradiated spot. The photoluminescence spectra of ZnO microcrystal are studied at both room temperature and low temperature of 10 K. With the ZnO microcrystal, we obtain that the peak intensity of near band-edge emission is at least 400 times stronger than that of deep-level emission at room temperature, and that up to fifth-order phonon replicas of free exciton emission are easily distinguished in the 10 K photoluminescence spectra. Both of them indicate that the ZnO microcrystal formed by intense laser irradiation has a very good crystalline structure.  相似文献   

11.
Nano-crystalline ZnO particles were synthesized using alcoholic solutions of zinc acetate dihydrate through a colloidal process. Five types of capping agents: 3-aminopropyl trimethoxysilane (Am), tetraethyl orthosilicate (TEOS), mercaptosuccinic acid (Ms), 3-mercaptopropyl trimethoxysilane (Mp) and polyvinylpyrrolidone (Pv) were added at the first ZnO precipitation time (first PPT) to limit the particle growth. The first three capping agents effectively capped the ZnO nanoparticles and limited the growth of the particles, while the last two capping agents caused agglomeration or larger clusters in the solutions. Particles synthesized were in the size range of 10-30 nm after capping, and grew to 60 and 100 nm in 3 and 6 weeks, respectively, during storage at ambient conditions. Refluxing time was found to only affect the first PPT time. Washing by ethanol and slow drying were very important in converting Zn(OH)2 into ZnO. XRD analyses revealed single phase ZnO Wurtzite crystal structure. Photoluminescence (PL) spectra showed high-intensity in UV emission and very low intensity in the visible emission, which indicates a good surface morphology of the ZnO nanoparticles with little surface defects. Optical absorption spectra showed a blue shift by the capped ZnO due to the quantum confinement effect by the single crystal size of 5-6 nm as analysed by TEM. Capping effectiveness of each agent is discussed through possible capping mechanism and chemical reaction of each capping agent. This synthesis process is a low cost, high purity, easy to control method using only bio-compatible materials.  相似文献   

12.
Atomic layer deposition (ALD) of zinc oxide (ZnO) films on (0 0 0 1) sapphire substrates was conducted at low temperatures by using diethyl-zinc (DEZn) and nitrous oxide (N2O) as precursors. It was found that a monolayer-by-monolayer growth regime occurred at 300 °C in a range of DEZn flow rates from 5.7 to 8.7 μmol/min. Furthermore, the temperature self-limiting process window for the ALD-grown ZnO films was also observed ranging from 290 to 310 °C. A deposition mechanism is proposed to explain how saturated growth of ZnO is achieved by using DEZn and N2O. Transmission spectroscopic studies of the ZnO films prepared in the self-limiting regime show that the transmittances of ZnO films are as high as 80% in visible and near infrared spectra. Experimental results indicate that ZnO films with high optical quality can be achieved by ALD at low temperatures using DEZn and N2O precursors.  相似文献   

13.
The ability of surface passivation to enhance the photoluminescence (PL) emission of Si nanocrystals in SiO2 has been investigated. Silicon precipitation in implanted samples takes place in a time scale of few minutes at 1100°C. For longer annealing at the same temperature, the PL intensity of the Si nanocrystals increases and eventually reaches saturation, while it correlates inversely with the amount of Si dangling bonds at the Si–SiO2 interface (Pb centers), as measured by electron spin resonance. This combined behavior is independent on the silica matrix properties, implantation profiles and annealing atmosphere and duration. The observation that the light emission enhancement is directly related to the annealing of Pb centers is confirmed by treatment in forming gas. This mild hydrogenation at much lower temperature (450°C) leads to a complete passivation of the Pb defects, increasing at the same time the PL yield and the lifetime.  相似文献   

14.
In this paper, nitridation process of GaAs (1 0 0) substrates was studied in-situ using X-ray photoelectron spectroscopy (XPS) and ex-situ by means of electrical method I-V and photoluminescence surface state spectroscopy (PLS3) in order to determine chemical, electrical and electronic properties of the elaborated GaN/GaAs interfaces.The elaborated structures were characterised by I-V analysis. The saturation current IS, the ideality factor n, the barrier height ΦBn and the serial resistance RS are determined.The elaborated GaN/GaAs structures are also exhibited a high PL intensity at room temperature. From the computer-aided analysis of the power-dependent PL efficiency measurements (PLS3 technique), the value of the interface state density NSS(E) close to the mid-gap was estimated to be in the range of 2-4 × 1011 eV−1 cm−2, indicating a good electronic quality of the obtained interfaces.Correlation among chemical, electronic and electrical properties of the GaN/GaAs interface was discussed.  相似文献   

15.
The formation of (1 1 1)-oriented Cu-clusters on ZnO(0 0 0 1)-Zn at room temperature is followed by in situ applied scanning tunneling microscopy. Kink-sites at step edges and especially the apexes of triangular ZnO-substrate terraces act as preferred nucleation sites. At room temperature the decay of small Cu-islands takes place on a time scale of minutes. Larger Cu-coverages lead to an ensemble of interconnected 3D-islands of uniform height separated by trenches down to the substrate. A disordered dislocation network is visible on top of the Cu-islands. Annealing leads to a piling up of the Cu-islands. An initially undisturbed ZnO-substrate in between the islands shows that there is no strong reaction between the Cu-clusters and the oxide at room temperature. A strong decrease of the adlayer coverage visible above the ZnO-substrate layer for annealing temperature above 570 K points to a partial entrenching of the islands into the oxide support and an alloy formation.  相似文献   

16.
Effects of different annealing atmospheres on the surface and microstructural properties of ZnO thin films grown on Si (1 0 0) substrates were investigated. X-ray diffraction results showed that the crystallinity of the ZnO thin film annealed in an oxygen atmosphere was better than that annealed in a nitrogen atmosphere. Atomic force microscopy and transmission electron microscopy (TEM) images showed that the surfaces of the ZnO thin films annealed in a nitrogen atmosphere became very rough in contrast to those annealed in an oxygen atmosphere. High-resolution TEM images showed that many stacking faults and tilted grains could be observed in the ZnO thin films annealed in a nitrogen atmosphere in contrast to those annealed in an oxygen atmosphere. Surface morphology and microstructural property variations due to different annealing atmospheres in ZnO thin films are also described on the basis of the experimental results.  相似文献   

17.
A. Sulyok  M. Menyhard 《Surface science》2007,601(8):1857-1861
The steady-state surface compositions of the polar (O and Zn terminated) faces of ZnO{0 0 0 1} produced by low energy (0.3-2 keV) Ar+ ion bombardment were studied by Auger electron spectroscopy and electron energy loss spectroscopy. The alterations produced by the ion bombardment using different ion energies were monitored by calculating the intensity ratios of the low and high energy Zn Auger peaks (59 eV and 994 eV, respectively); Zn and O Auger peaks (59 eV and 510 eV, respectively). Based on the dependence of these ratios on the ion energy and termination of the surface, we could conclude that the stability of the Zn face is higher against the low energy argon ion bombardment-induced compositional changes than that of the O face.  相似文献   

18.
The hydrogen defect in ZnO that gives rise to a local vibrational mode at 3326 cm−1 is investigated by means of IR absorption. Sub-band gap illumination results in the appearance of a new line at 3358 cm−1 at the expense of the 3326 cm−1 signal. The measurements identify both IR absorption signals as O–H stretch modes of the same defect in different charge states. The effect of the sub-band gap light strongly suggest that this defect has a deep level in the band gap. Additionally, results on the thermal stability of the 3326 cm−1 feature are presented.  相似文献   

19.
In this paper we study nanocrystalline zinc oxide thin films produced by oxidation of electrodeposited zinc nanolayers on a monocrystalline p-Si(1 1 1) substrate.The electrolyte used is ZnCl2, an aqueous solution of 4 × 10−2 mol/l concentration. Several deposits were made for various current densities, ranging from 13 mA/cm2 to 44 mA/cm2, flowing through the solution at room temperature. A parametric study enabled us to assess the effect of the current density on nucleation potential and time as well as zinc films structure. The grazing incidence X-ray diffraction (GIXD) revealed that both Zn and ZnO films are polycrystalline and nanometric. After 1-h oxidation of zinc films at 450 °C in the open air, the structural analyses showed that the obtained ZnO films remained polycrystalline with an average crystal size of about 47 nm and with (1 0 0), (0 0 2) and (1 0 1) as preferential crystallographic orientations.  相似文献   

20.
A new optical material, the ZnO nanoparticles that are modified with ZnS and confined in SBA-15, has been prepared through the controllable sulfuration at relatively low temperature (40 °C) from the ZnO/SBA-15 composites. The precursor composites can be prepared through a novel path in which the zinc is well dispersed by directly grinding zinc nitrate into the as-synthesized SBA-15 occluded with template followed by calcination, and it is possible to control the conversion of ZnO to ZnS by adjusting the reaction time. The resulting samples are characterized by XRD, nitrogen adsorption–desorption and photoluminescence (PL) spectroscopy. ZnO–ZnS composites, mainly confined in the mesopore of SBA-15, exhibit dramatically enhanced blue emission at the expense of the UV emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号