首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this paper, we studied the stabilization of nonlinear regularized Prabhakar fractional dynamical systems without and with time delay. We establish a Lyapunov stabiliy theorem for these systems and study the asymptotic stability of these systems without design a positive definite function V (without considering the fractional derivative of function V is negative). We design a linear feedback controller to control and stabilize the nonautonomous and autonomous chaotic regularized Prabhakar fractional dynamical systems without and with time delay. By means of the Lyapunov stability, we obtain the control parameters for these type of systems. We further present a numerical method to solve and analyze regularized Prabhakar fractional systems. Furthermore, by employing numerical simulation, we reveal chaotic attractors and asymptotic stability behaviors for four systems to illustrate the presented theorem.  相似文献   

2.
双卷波Chua电路的发明第一次在混沌理论与非线性电路之间建立了直接联系.复杂多卷波混沌系统在混沌理论与非线性电路之间架起了桥梁.复杂多卷波混沌系统具有明确的工程应用背景,它的理论设计与电路实现在过去三十年里得到迅猛发展.本文简要的回顾国内外过去三十年在复杂多卷波混沌系统的理论设计与电路实现上的主要研究进展,包括基本理论,设计方法与典型的工程应用,试图推进国内复杂多卷波混沌系统的研究.  相似文献   

3.
This paper is concerned with the chaos control of two autonomous chaotic and hyper-chaotic systems. First, based on the Pontryagin minimum principle (PMP), an optimal control technique is presented. Next, we proposed Lyapunov stability to control of the autonomous chaotic and hyper-chaotic systems with unknown parameters by a feedback control approach. Matlab bvp4c and ode45 have been used for solving the autonomous chaotic systems and the extreme conditions obtained from the PMP. Numerical simulations on the chaotic and hyper-chaotic systems are illustrated to show the effectiveness of the analytical results.  相似文献   

4.
In this paper, we analyze the robustness of global exponential stable stochastic delayed systems subject to the uncertainty in parameter matrices. Given a globally exponentially stable systems, the problem to be addressed here is how much uncertainty in parameter matrices the systems can withstand to be globally exponentially stable. The upper bounds of the parameter uncertainty intensity are characterized by using transcendental equation for the systems to sustain global exponential stability. Moreover, we prove theoretically that, the globally exponentially stable systems, if additive uncertainties in parameter matrices are smaller than the upper bounds arrived at here, then the perturbed systems are guaranteed to also be globally exponentially stable. Two numerical examples are provided here to illustrate the theoretical results.  相似文献   

5.
Chaotic bat algorithm   总被引:1,自引:0,他引:1  
Bat algorithm (BA) is a recent metaheuristic optimization algorithm proposed by Yang. In the present study, we have introduced chaos into BA so as to increase its global search mobility for robust global optimization. Detailed studies have been carried out on benchmark problems with different chaotic maps. Here, four different variants of chaotic BA are introduced and thirteen different chaotic maps are utilized for validating each of these four variants. The results show that some variants of chaotic BAs can clearly outperform the standard BA for these benchmarks.  相似文献   

6.
In this paper, we derive some less stringent conditions for the exponential and asymptotic stability of impulsive control systems with impulses at fixed times. These conditions are then used to design an impulsive control law for the Quantum Cellular Neural Network chaotic system, which drives the chaotic state to zero equilibrium and synchronizes two chaotic systems. An active sliding mode control method is synchronizing two chaotic systems and controlling chaotic state to periodic motion state. And a sufficient condition is drawn for the robust stability of the error dynamics, and is applied to guiding the design of the controllers. Finally, numerical results are used to show the robustness and effectiveness of the proposed control strategy.  相似文献   

7.
本文证明了一类非线性发展方程全局解的存在性,并证明适当假设下,当非线性项满足临界指数增长条件时,方程具有紧吸引子。  相似文献   

8.
This paper investigates the global synchronization of a class of third-order non-autonomous chaotic systems via the master–slave linear state error feedback control. A sufficient global synchronization criterion of linear matrix inequality (LMI) and several algebraic synchronization criteria for single-variable coupling are proven. These LMI and algebraic synchronization criteria are then applied to two classes of well-known third-order chaotic systems, the generalized Lorenz systems and the gyrostat systems, proving that the local synchronization criteria for the chaotic generalized Lorenz systems developed in the existing literature can actually be extended to describe global synchronization and obtaining some easily implemented synchronization criteria for the gyrostat systems.  相似文献   

9.
This paper considers the impulsive functional differential equations with infinite delays or finite delays. Some new sufficient conditions are obtained to guarantee the global exponential stability by employing the improved Razumikhin technique and Lyapunov functions. The result extends and improves some recent works. Moreover, the obtained Razumikhin condition is very simple and effective to implement in real problems and it is helpful to investigate the stability of delayed neural networks and synchronization problems of chaotic systems under impulsive perturbation. Finally, a numerical example and its simulation is given to show the effectiveness of the obtained result in this paper.  相似文献   

10.
Chaotic systems would degrade owing to finite computing precisions, and such degradation often seriously affects the performance of digital chaos-based applications. In this paper, a chaotification method is proposed to solve the dynamical degradation of digital chaotic systems based on a hybrid structure, where a continuous chaotic system is applied to control the digital chaotic system, and a unidirectional coupling controller that combines a linear external state control with a modular function is designed. Moreover, we proof rigorously that a class of digital chaotic systems can be driven to be chaotic in the sense that the system is sensitive to initial conditions. Different from the existing remedies, this method can recover the dynamical properties of system, and even make some properties better than those of the original chaotic system. Thus, this new approach can be applied to the fields of chaotic cryptography and secure communication.  相似文献   

11.
The study of the chaotic Chen dynamic System (CDS) has been a recent focus in the literature, with numerous works exploring its various chaotic features. However, the majority of these studies have relied primarily on numerical techniques to investigate nonlinear dynamic systems (NLDSs). In this context, our aim is to derive approximate analytical solutions for the CDS by developing an iterative scheme. We have proven the convergence theorem for this scheme, which ensures that our iterative process will converge to the exact solution. Additionally, we introduce a new method for constructing the extended center manifold, a critical component in the analysis of dynamical systems. The characteristics of the global bifurcation of the system components within the parameter space are explored. The error analysis of the iterated solutions demonstrates the efficiency of the present technique. We present both three-dimensional (3D) and two-dimensional (2D) phase portraits of the system. The 3D portrait reveals a feedback loop pattern, while the 2D portrait, which represents the interaction of the system components, exhibits multiple pools and cross pools. Furthermore, we illustrate the global bifurcation by visualizing the components of the CDS against the space parameters. The sensitivity of CDS to in nitesimal variations in the initial conditions (ICs) are tested. It is found that even minor changes can lead to signi cant alterations in the system.  相似文献   

12.
Control system design for non-affine systems is a difficult problem because of the lack of mathematical tools. The key to the problem is solving for an implicit function but the known results for implicit functions are not applicable for higher dimensional systems except for single-input and single-output systems. In this paper, a new version of a global implicit function theorem in higher dimension is presented and proved. This result can be applied to show the controllability of a class of non-affine multi-input and multi-output (MIMO) system so that approximation based control system design can be applied with ease.  相似文献   

13.
In this paper, the problem of synchronizing two chaotic gyros in the presence of uncertainties, external disturbances and dead-zone nonlinearity in the control input is studied while the structure of the gyros, parameters of the dead-zone and the bounds of uncertainties and external disturbances are unknown. The dead-zone nonlinearity in the control input might cause the perturbed chaotic system to show unpredictable behavior. This is due to the high sensitivity of these systems to small changes in their parameters. Thereby, the effect of these issues should not be ignored in the control design for these systems. In order to eliminate the effects from the dead-zone nonlinearity, in this paper, a robust adaptive fuzzy sliding mode control scheme is proposed to overcome the synchronization problem for a class of unknown nonlinear chaotic gyros. The main contribution of our paper in comparison with other works that attempt to solve the problem of dead-zone in the synchronization of chaotic gyros is that we assume that the structure of the system, uncertainties, external disturbances, and dead-zone are fully unknown. Simulation results are provided to illustrate the effectiveness of the proposed method.  相似文献   

14.
A simple global synchronization criterion for coupled chaotic systems   总被引:16,自引:0,他引:16  
Based on the Lyapunov stabilization theory and Gerschgorin theorem, a simple generic criterion is derived for global synchronization of two coupled chaotic systems with a unidirectional linear error feedback coupling. This simple criterion is applicable to a large class of chaotic systems, where only a few algebraic inequalities are involved. To demonstrate the efficiency of design, the suggested approach is applied to some typical chaotic systems with different types of nonlinearities, such as the original Chua’s circuit, the modified Chua’s circuit with a sine function, and the Rössler chaotic system. It is proved that these synchronizations are ensured by suitably designing the coupling parameters.  相似文献   

15.
This work presents a direct approach to design stabilizing controller based on a special matrix structure to synchronize chaotic systems and extends the approach to synchronize fractional chaotic systems. With this method, chaos synchronization is implemented in Lorenz chaotic systems with known parameters and the same to Lorenz chaotic systems with unknown parameters. Especially, fractional Lorenz chaotic system with unknown parameters is synchronized by fractional Chen chaotic system too. Numerical simulations confirm the effectiveness of the method proposed.  相似文献   

16.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

17.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

18.
In this paper, the global exponential synchronization is investigated for an array of asymmetric neural networks with time-varying delays and nonlinear coupling, assuming neither the differentiability for time-varying delays nor the symmetry for the inner coupling matrices. By employing a new Lyapunov-Krasovskii functional, applying the theory of Kronecker product of matrices and the technique of linear matrix inequality (LMI), a delay-dependent sufficient condition in LMIs form for checking global exponential synchronization is obtained. The proposed result generalizes and improves the earlier publications. An example with chaotic nodes is given to show the effectiveness of the obtained result.  相似文献   

19.
This paper proposes a backstepping method to resolve the synchronization of discrete-time chaotic systems. The proposed scheme offers systematic design method for the synchronization of a class of discrete-time hyper-chaotic systems, which implies much complicated high-order chaotic systems can be used to improve the security in chaos communications. A well-known chaotic systems: generalized Henon map is considered as illustrative example to demonstrate the general applicability of backstepping design. Numerical simulations verify the effectiveness of the approach.  相似文献   

20.
In this paper, we proposed a novel three-order autonomous circuit to construct a chaotic circuit with double scroll characteristic. The design idea is to use RLC elements and a nonlinear resistor. The one of salient features of the chaotic circuit is that the circuit with two flexible breakpoints of nonlinear element, and the advantage of the flexible breakpoint is that it increased complexity of the dynamical performance. Here, if we take a large and suitable breakpoint value, then the chaotic state can masking a large input signal in the circuit. Furthermore, we proposed a secure communication hyperchaotic system based on the proposed chaotic circuits, where the chaotic communication system is constituted by a chaotic transmitter and a chaotic receiver. To achieve the synchronization between the transmitter and the receiver, we are using a suitable Lyapunov function and Lyapunov theorem to design the feedback control gain. Thus, the transmitting message masked by chaotic state in the transmitter can be guaranteed to perfectly recover in the receiver. To achieve the systems performance, some basic components containing OPA, resistor and capacitor elements are used to implement the proposed communication scheme. From the viewpoints of circuit implementation, this proposed chaotic circuit is superior to the Chua chaotic circuits. Finally, the test results containing simulation and the circuit measurement are shown to demonstrate that the proposed method is correct and feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号