首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of KI/LiF/CdCl2 on photoluminescent and electroluminescent (EL) spectra have been reported for (Zn-Cd)S:Cu films. Nanocrystalline films of (Zn-Cd)S:Cu have been prepared using chemical deposition technique in aqueous alkaline bath and their subsequent condensation on substrates. Important results in terms of XRD, SEM, absorption spectra, PL and EL spectra, voltage and frequency dependence of EL brightness are presented. Also, EL brightness waves, EL decay and dependence of EL brightness on nature of electrode material are presented and discussed. SEM studies show best growth conditions in the presence of CdCl2. Results of XRD studies are associated to ZnS and CdS. Both the studies show average particle sizes to be in the nano order. PL and EL emissions from different films show emission peaks in the blue–green region. Results of absorption spectra show a slight change in band gaps owing to the addition of impurities. Voltage dependence of EL brightness shows effectiveness of acceleration–collision mechanism. Frequency dependence of EL brightness first shows an increase in brightness in the lower frequency range, followed by saturation at higher frequencies. Brightness waves consist of primary and secondary waves, which depend on voltage and frequency of excitation. EL cells with Al electrode give better brightness compared with cells with Ag electrodes. The lifetimes of EL emission are found to be of the order of microseconds.  相似文献   

2.
Pure and Cu-doped ZnO (ZnO:Cu) thin films were deposited on glass substrates using radio frequency (RF) reactive magnetron sputtering. The effect of substrate temperature on the crystallization behavior and optical properties of the ZnO:Cu films have been studied. The crystal structures, surface morphology and optical properties of the films were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and a fluorescence spectrophotometer, respectively. The results indicated that ZnO films showed a stronger preferred orientation toward the c-axis and a more uniform grain size after Cu-doping. As for ZnO:Cu films, the full width at half maxima (FWHM) of (0 0 2) diffraction peaks decreased first and then increased, reaching a minimum of about 0.42° at 350 °C and the compressive stress of ZnO:Cu decreased gradually with the increase of substrate temperature. The photoluminescence (PL) spectra measured at room temperature revealed two blue and two green emissions. Intense blue-green luminescence was obtained from the sample deposited at higher substrate temperature. Finally, we discussed the influence of annealing temperature on the structural and optical properties of ZnO:Cu films. The quality of ZnO:Cu film was markedly improved and the intensity of blue peak (∼485 nm) and green peak (∼527 nm) increased noticeably after annealing. The origin of these emissions was discussed.  相似文献   

3.
The cadmium oxide (CdO) and F:CdO films have been deposited by spray pyrolysis method using cadmium acetate and ammonium fluoride as precursors for Cd and F ions, respectively. The effect of temperature and F doping on the structural, morphological, optical and Hall effect properties of sprayed CdO thin films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical absorption and electrical measurement techniques. TGA and DTA studies, indicates the formation of CdO by decomposition of cadmium acetate after 250 °C. XRD patterns reveal that samples are polycrystalline with cubic structure and exhibits (2 0 0) preferential orientation. Considerable broading of (2 0 0) peak, simultaneous shifting of corresponding Bragg's angle have been observed with respect to F doping level. SEM and AFM show the heterogeneous distribution of cubical grains all over the substrate, which are randomly distributed. F doping shifts the optical gap along with the increase in the transparency of CdO films. The Hall effect measurement indicates that the resistivity and mobility decrease up to 4% F doping.  相似文献   

4.
Undoped and lithium (Li)-doped ZnO films were prepared by sol-gel method using spin coating technique. The effects of Li content on the crystallinity and morphological properties of ZnO films were assessed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). XRD patterns of the films showed the hexagonal wurtzite type polycrystalline structure and that the incorporation of lithium leads to substantial changes in the structural characteristics of ZnO films. The SEM and AFM measurements showed that the surface morphology of the films was affected from the lithium incorporation. The wrinkle network was observed on the surface from both SEM and AFM results for undoped ZnO. The wrinkle structure disappeared with increasing Li content. The absorption spectra of the ZnO and 5% Li-doped ZnO (LZO5) films were carried out between 140 and 400 K temperatures. The optical band gap of ZnO and LZO5 films (calculated at various temperatures) showed a linear dependence on the temperature. The absolute zero value optical band gap and the rate of change of the band gap with temperature of the ZnO and LZO5 films were found to be 3.339 and 3.322 eV, and 2.95 × 10−4 and 1.60 × 10−4 eV/K, respectively. The transport mechanisms in the ZnO and LZO5 films have been investigated by analyzing of the temperature (80-300 K) dependence of the conductivity. The activation energies of the ZnO film increased with Li content.  相似文献   

5.
Al-doped zinc oxide (AZO) thin films have been prepared by spray pyrolysis (SP) technique of zinc acetate and aluminium nitrate, and the effect of thickness on structural and optical properties has been investigated. The structural and optical characteristics of the AZO films were examined by X-ray diffraction (XRD) and double-beam spectrophotometry. These films, deposited on glass substrates at an optimal substrate temperature (TS = 450 °C), have a polycrystalline texture with a hexagonal structure. Transmission measurements showed that for visible wavelengths, the AZO films have an average transmission of over 90%. The optical parameters have been calculated. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for the sprayed films is also reported. Optical band gap of AZO is 3.30 and 3.55 eV, respectively, depending on the film thicknesses.  相似文献   

6.
In this paper, zinc oxide (ZnO) and cerium-doped zinc oxide (ZnO:Ce) films were deposited by reactive chemical pulverization spray pyrolysis technique using zinc and cerium chlorides as precursors. The effects of Ce concentration on the structural and optical properties of ZnO thin films were investigated in detail. These films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and photoluminescence (PL) measurements. All deposited ZnO layers at the temperature 450 °C are polycrystalline and indicate highly c-axis oriented structure. The dimension of crystallites depends on incorporation of Ce atoms into the ZnO films. The photoluminescence spectra of the films have been studied as a function of the deposition parameters such as doping concentrations and post grows annealing. Photoluminescence spectra were measured at the temperature range from 13 K to 320 K.  相似文献   

7.
We prepared nickel oxide (NiO) thin films with p-type Cu dopants (5 at%) using a sol–gel solution process and investigated their structural, optical, and electrical characteristics by X-ray diffraction (XRD), atomic force microscopy (AFM), optical transmittance and current–voltage (IV) characteristics. The crystallinity of the NiO films improved with the addition of Cu dopants, and the grain size increased from 38 nm (non-doped) to 50 nm (Cu-doped). The transmission of the Cu-doped NiO film decreased slightly in the visible wavelength region, and the absorption edge of the film red-shifted with the addition of the Cu dopant. Therefore, the width of the optical band gap of the Cu-doped NiO film decreased as compared to that of the non-doped NiO film. The resistivity of the Cu-doped NiO film was 23 Ω m, which was significantly less than that of the non-doped NiO film (320 Ω m). Thus, the case of Cu dopants on NiO films could be a plausible method for controlling the properties of the films.  相似文献   

8.
Ruthenium oxide (RuO2) thin films have been prepared using single step chemical method containing Ru(III) Cl3 solution in an aqueous medium at low temperature. The structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and optical absorption technique. The XRD study revealed the formation of amorphous RuO2 thin film. The surface examination by SEM showed formation of nano-porous material on the substrate. The TEM study revealed the formation of nanostructured material. The optical absorption studies showed the presence of direct band transition with band gap equal to 2.2 eV. The RuO2 has proved its applicability in supercapacitor showing 50 F/g specific capacitance in 0.5 M H2SO4 at 20 mV/s scan rate.  相似文献   

9.
The structural and optical properties of ZnO films deposited on Si substrate following rapid thermal annealing (RTA) have been investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), and photoluminescence (PL) measurements. After RTA treatment, the XRD spectra have shown an effective relaxation of the residual compressive stress, an increase of the intensity and narrowing of the full-width at half-maximum (FWHM) of the (0 0 2) diffraction peak of the as-grown ZnO film. AFM images show roughening of the film surface due to increase of grain size after RTA. The PL spectrum reveals a significant improvement in the UV luminescence of ZnO films following RTA at 800 °C for 1 min.  相似文献   

10.
Polycrystalline ZnO thin films co-doped with Cu and N have been obtained by chemical bath deposition. Introduction of Cu and N causes the change of strained stress in ZnO films, which subsequently affects the structural and optical properties. The dependence of structural and optical properties of the ZnO films on lattice strained stress is investigated by XRD measurement, SEM, PL spectrum, optical reflection and Raman spectrum. The result of photoluminescence of Cu-N co-doped ZnO films indicates that the UV emission peaks shift slightly towards higher energy side with decrease in tensile strain and vise versa. The blue-shift of the absorption edge and up-shift of E2 (high) mode of the films can be observed in the optical reflection and Raman spectra.  相似文献   

11.
A unique vapor phase deposition (VPD) technique was designed and built to achieve in situ CdCl2 treatment of CdTe film. The substrate temperature was 400 °C, and the temperature of CdTe mixture with CdCl2 source was 500 °C. The structural and morphological properties of CdTe have been studied as a function of wt.% CdCl2 concentration by using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD measurements show that the presence of CdCl2 vapor induces (1 1 1)-oriented growth in the CdTe film. SEM measurements have shown enhance growth of grains, in the presence of CdCl2. From AFM the roughness of the films showed a heavy dependence on CdCl2 concentration. In the presence of 4% CdCl2 concentration, the CdTe films roughness has a root mean square (rms) value of about 275 Å. This value is about 831 Å for the non-treated CdTe films.  相似文献   

12.
This work investigates the effects of the temperature, deposition time and annealing ambient on the electro-optical and structural properties of nano crystalline (Cd–Zn)S films prepared by chemical bath deposition (CBD). The deposited films being uniform and adherent to the glass substrates are amorphous in nature and the crystallinity as well as the grain size is found to increase on post-deposition annealing. The obtained specimens are thoroughly characterized before and after annealing paying particular attention to their structure, composition and morphology. Annealing in air reduces the extent of disorder in grain boundaries and energy band-gap. A correlation between the structural and optical properties is investigated in detail. The surface morphology and structural properties of the as-deposited and annealed (Cd–Zn)S thin films are studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and optical transmission spectra. The optical transmission spectra are recorded within the range of 300–800 nm and 300–900 nm. The electroluminescent (EL) intensity is found to be maximum at a particular temperature, which decreases with further increase in temperature and peaks of photoluminescent (PL) and EL spectra are centered at 546 nm and 592 nm. The emission intensity also increases with increasing thickness of the film.  相似文献   

13.
Thin films of CuxS (x=1.0, 1.76, and 2.0) were grown by solution growth technique (SGT). The deposition parameters such as pH of solution, deposition time, and deposition temperature were optimized. The deposited films were annealed in Ar atmosphere at 250 °C. The changes in structural and optical transport phenomenon of annealed films have been studied. The surface morphology and composition of films were studied by SEM micrographs and EDAX analysis, respectively, and the surface roughness was calculated by atomic force microscopy (AFM). The XRD study showed the polycrystalline nature of annealed film. The lattice parameters of different phases of the material were calculated from the XRD pattern. The absorption coefficient varies in the range of 1×105-6×105 cm−1. The optical bandgaps of CuS, Cu1.76S, and Cu2S are 1.72, 2.11, and 2.48 eV, respectively.  相似文献   

14.
The structural and optical properties of pure and Na-doped ZnO thin films have been investigated by X-ray diffraction (XRD), atom force microscopy and UV-Vis spectrophotometer. The crystal structure of all the thin films is the hexagonal wurtzite. The average grain size and surface roughness increases with the increase of the Na/Zn ratio. The optical band gap of the thin films decreases from 3.26 to 3.12 eV by increasing the Na/Zn ratio from 0.0 to 0.10. Transmittance spectra were used to determine the optical constants of the thin films, and the effect of Na/Zn ratio on the optical constants was investigated. With the increase of Na/Zn ratio, the refractive index decreases and the extinction coefficient increases in the 380-700 nm spectral range.  相似文献   

15.
CuInS2 ternary films were prepared by a soft solution processing, i.e. successive ionic layer absorption and reaction (SILAR) method. The films were deposited on glass substrates at room temperature and heat-treated under Ar atmosphere at 500 °C for 1 h. CuCl2 and InCl3 mixed solutions with different ionic ratios ([Cu]/[In]) were used as cation precursor and Na2S as the anion precursor. The effect of the [Cu]/[In] ratio in precursor solution on the structural, chemical stoichiometry, topographical, optical and electrical properties of CuInS2 thin films was investigated. XPS results demonstrated that stoichiometric CuInS2 film can be obtained by adjusting [Cu]/[In] ratios in solution. Chalcopyrite structure of the film was confirmed by XRD analysis. The near stoichiometric CuInS2 film has the optical band gap Eg of 1.45 and resistivity decreased with increase of [Cu]/[In] ratios.  相似文献   

16.
Semiconducting Sb2Se3 thin films have been prepared onto the stainless steel and fluorine doped tin oxide coated glass substrates from non-aqueous media using an electrodeposition technique. The electrodeposition potentials for different bath compositions and concentrations of solution have been estimated from the polarization curves. SbCl3 and SeO2 in the volumetric proportion as 1:1 with their equimolar solution concentration of 0.05 M form good quality films. The films are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical absorption techniques. The SEM studies show that the film covers the total substrate surface with uneven surface morphology. The XRD patterns of the films obtained by varying compositions and concentrations show that the as-deposited films are polycrystalline with relatively higher grain size for 1:1 composition and 0.05 M concentration. The optical band gap energy for indirect transition in Sb2Se3 thin films is found to be 1.195 eV.  相似文献   

17.
In this work, CdS and Cu doped CdS films (at the Cu percentages of 1, 3 and 5) have been deposited onto glass substrates at 350 ± 5 °C by ultrasonic spray pyrolysis technique and their application potential for photovoltaic solar cells have been investigated. Optical properties and thicknesses of the films have been investigated by spectroscopic ellipsometry (SE). Ellipsometric angle ψ was used as the source point for optical characterizations. The optical constants (n and k) and the thicknesses of the films have been fitted according to Cauchy model. Also, optical properties of the produced films have been analyzed by transmittance and reflectance spectra. Refractive index (n), extinction coefficient (k) and reflectance (R) spectra have been taken by spectroscopic ellipsometer, while transmittance spectra have been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap type and value of the films. Mott-Schottky (M-S) measurements have been made to determine the conductivity type and carrier concentration of the films. Samples showed n-type conductivity and carrier concentration of undoped CdS sample was found to be 1.19 × 1019 cm−3. Also, it was concluded that Cu doping has an acceptor effect in CdS samples. From the results of these investigations, the application potential of CdS:Cu films for photovoltaic solar cells as window layer was searched.  相似文献   

18.
ZnS:Cu,Cl electroluminescence (EL) phosphors were prepared by high-temperature (1150 °C) solid-state reaction, subsequent ultrasonic treatment (t=0-60 min) and final low-temperature annealing process at 750 °C. The as-synthesized phosphors were characterized by X-ray powder diffraction (XRD), UV-vis absorbance spectra, electron probe microanalyzer (EPMA) and photoluminescence (PL) spectra. EL performance was investigated on an EL lamp fabricated by screen-printing at 100 V and 400 Hz. Ultrasound irradiation leads to intensity reductions and width increases of some XRD diffraction peaks, and results in a slight red-shift of UV-vis absorption edge. It also exhibits strong influences on PL and EL properties of the phosphors. Generally, PL performance monotonically declines with the increase of ultrasonic time, while EL performance benefits from the ultrasonic treatment and is superior to that of the commercial ones. The defects in the microstructure induced by the ultrasonic treatment are the fundamental reason for the change of PL and EL performances.  相似文献   

19.
Zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) thin films were prepared by RF diode sputtering at varying deposition conditions. The effects of negative bias voltage and RF power on structural and optical properties were investigated. X-ray diffraction measurements (XRD) confirmed that both un-doped and Al-doped ZnO films are polycrystalline and have hexagonal wurtzite structure. The preferential 〈0 0 1〉 orientation and surface roughness evaluated by AFM measurements showed dependence on applied bias voltage and RF power. The sputtered ZnO and ZnO:Al films had high optical transmittance (>90%) in the wavelength range of 400-800 nm, which was not influenced by bias voltage and RF power. ZnO:Al were conductive and highly transparent. Optical band gap of un-doped and Al-doped ZnO thin films depended on negative bias and RF power and in both cases showed tendency to narrowing.  相似文献   

20.
Non-stoichiometric ternary chalcogenides (Zn,Fe)S were prepared in the film form by pyrolytic spray deposition technique, using air/nitrogen as the carrier gas. The precursor solution comprised of ZnCl2, FeCl2 and thiourea. The depositions were carried out under optimum conditions of experimental parameters viz. carrier gas (air/nitrogen) flow rate, concentration of precursor constituents, nozzle substrate distance and temperature of quartz substrate. The deposited thin films were later sintered in argon at 1073 K for 120 min.The structural, compositional and optical properties of the sintered thin films were studied. X-ray diffraction studies of the thin films indicated the presence of (Zn,Fe)S solid solution with prominent cubic sphalerite phase while surface morphology as determined by scanning electron microscopy (SEM) revealed a granular structure.The chemical composition of the resulting thin films as analyzed by energy dispersive X-ray analysis (EDAX) reflected the composition of the precursor solutions from which the depositions were carried out with Fe at% values ranging from 0.4 up to 33.SEM micrographs of thin films reveal that the grain sizes of the thin films prepared using air as carrier gas and N2 as carrier gas are in the vicinity of 300 and 150 nm, respectively.The diffuse transmittance measurements for thin films, as a function of wavelength reveal the dependence of direct optical band gap on Fe content and type of phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号