首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The interaction between nitrophenols and 7-hydroxy-4-azidomethylcoumarin has been investigated by fluorescence and UV-vis absorbance spectroscopy. Quenching mechanisms have been evaluated by fluorescence measurements at different temperatures. Stern-Volmer quenching constant Ksv and corresponding thermodynamic parameters ΔH0, ΔG0 and ΔS0 were calculated. Binding studies concerning the number of binding sites ‘n’ and apparent binding constant ‘K’ were performed by fluorescence quenching method.  相似文献   

2.
Naringenin, a flavanone compound highly enriched in grapefruits, has been identified as a possible inhibitor of cell proliferation; and thus has the potential to act as an antitumorigenic agent. In this study, the binding of naringenin to bovine serum albumin (BSA) was studied at the physiological conditions (pH=7.40) by fluorescence and UV-vis spectroscopy. Naringenin strongly quenches the intrinsic fluorescence of BSA, and a decrease in the fluorescence quenching constant was observed together with an increase in temperature, which indicates that the fluorescence quenching of BSA by naringenin is a result of the formation of naringenin-BSA complex. Binding parameters calculating from Stern-Volmer method and Scatchard method showed that naringenin bind to BSA with the binding affinities of the order 104 L mol−1. Thermodynamic parameters such as ΔG, ΔH and ΔS, were calculated at different temperatures, showing that electrostatic interactions were mostly responsible for the binding of naringenin to BSA. Site marker competitive displacement experiments demonstrating that naringenin bind with high affinity to site I (subdomain IIA) of BSA. Furthermore, the effect of metal ions to naringenin-BSA system was studied, and the specific binding distance r (3.30 nm) between donor (Trp-212) and acceptor (naringenin) was obtained according to fluorescence resonance energy transfer (FRET).  相似文献   

3.
Docetaxel is a semi-synthetic product derived from the needles of the European yew. It is an antineoplastic agent belonging to the taxoid family. The interaction between docetaxel and human serum albumin (HSA) has been investigated systematically by the fluorescence quenching technique, synchronous fluorescence spectroscopy, ultraviolet (UV)-vis absorption spectroscopy, circular dichroism (CD) spectroscopy and Fourier transform infrared (FT-IR) under physiological conditions. Our fluorescence data showed that HSA had only one docetaxel binding site and the binding process was a static quenching procedure. According to the Van’t Hoff equation, the thermodynamic parameters standard enthalpy (ΔH0) and standard entropy (ΔS0) were calculated to be −41.07 KJ mol−1 and −49.72 J mol−1 K−1. These results suggested that hydrogen bond was the predominant intermolecular force stabling the docetaxel-HSA complex. The data from the CD, FT-IR and UV-vis spectroscopy supported the change in the secondary structure of protein caused by the interaction of docetaxel with HSA.  相似文献   

4.
The interaction of La3+ to bovine serum albumin (BSA) has been investigated mainly by fluorescence spectra, UV-vis absorption spectra, and circular dichroism (CD) under simulative physiological conditions. Fluorescence data revealed that the quenching mechanism of BSA by La3+ was a static quenching process and the binding constant is 1.75×104 L mol−1 and the number of binding sites is 1 at 289 K. The thermodynamic parameters (ΔH=−20.055 kJ mol−1, ΔG=−23.474 kJ mol−1, and ΔS=11.831 J mol−1 K−1) indicate that electrostatic effect between the protein and the La3+ is the main binding force. In addition, UV-vis, CD, and synchronous fluorescence results showed that the addition of La3+ changed the conformation of BSA.  相似文献   

5.
In this paper, the interaction of neutral red (NR) with bovine serum albumin (BSA) and the sonodynamic damage to BSA under ultrasonic irradiation was studied by means of ultraviolet-visible (UV-vis) and fluorescence spectra. The quenching constant (KSV=5.749×104 L/mol), binding constant (KA=3.19×104 L/mol) and binding site number (n=0.9462) were measured. The binding distance (r=2.47 nm) between NR and BSA was obtained according to Föster’s non-radiative energy transfer theory. The damage process of BSA molecules was detected by the hyperchromic effect of UV-vis spectra and quenching of intrinsic fluorescence spectra. In addition, the influencing factors such as ultrasonic irradiation time and NR concentration on the damage to BSA molecules were also considered. The results showed that the damage degree is enhanced with the increase of ultrasonic irradiation time and NR concentration. The possible mechanism of sonodynamic damage to BSA molecules was mainly mediated by singlet oxygen (1O2). Otherwise, the binding and damaging sites to BSA molecules were also estimated by synchronous fluorescence. The results indicated that the NR is more vicinal to tryptophan (Trp) residue than to tyrosine (Tyr) residue and the damage site is also mainly at Trp residues. The research result will bring a certain significance to use sonosensitive drugs in the fields of tumor treatment.  相似文献   

6.
The binding properties of diprophylline (DPP) to lysozyme (Lys) were investigated using fluorescence spectroscopy in combination with UV-vis absorption techniques under simulative physiological conditions. Results of fluorescence measurement indicated that the intrinsic fluorescence of Lys was strongly quenched by DPP. The binding constants and the number of binding sites at different temperatures (298, 310, and 318 K) calculated with the data obtained from fluorescence quenching experiments via the modified Stern-Volmer equation were 8.61×104 L mol−1 and 1.34; 10.36×104 L mol−1 and 1.22; 12.85×104 L mol−1 and 1.11, respectively. Positive values of ΔH0 and ΔS0 obtained according to the Van’t Hoff equation for the formation of the DPP-Lys complex implied that typical hydrophobic interactions might play a significant role during the binding process. Furthermore, the effect of DPP on the conformation change of Lys was analyzed using synchronous fluorescence measurement. The effects of common co-ions on the interaction of DPP with Lys were also discussed.  相似文献   

7.
Abstract

In order to explore the interaction between meloxicam and trypsin, the interaction mechanism between meloxicam and trypsin was studied by fluorescence spectrum, UV-vis absorption spectrum, circular dichroism spectrum, and molecular docking simulation under the experimental condition of pH = 7.40. The results of spectral experiments showed that meloxicam could effectively quench the internal fluorescence of trypsin in the form of static quenching, formed a stable complex at 1:1, and changed the conformation of trypsin. The results of thermodynamic constant showed that ΔG?H?S?>?0 indicates that the main force type of the binding system was hydrophobic interaction and hydrogen bonding. Molecular docking technique showed that the best binding site between meloxicam and trypsin was near the catalytic active center of trypsin, and the interaction between them changed the microenvironment of amino acid residues in the catalytic active center of trypsin. The mathematical model of drug and protein showed that when the concentration ratio of meloxicam to trypsin was 1:1, the protein binding rate of the binding system was 5.15%. The concentration ratio of meloxicam to trypsin was 30: 1, and the protein binding rate was 45.4%. The results showed that when the drug concentration was high, the binding effect of the system had a great influence on the concentration of free trypsin.  相似文献   

8.
The binding of nobiletin to human serum albumin (HSA) was investigated by fluorescence, UV-vis, FT-IR, CD, and molecular modeling. Fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (K) at four different temperatures (289, 296, 303 and 310 K) were 4.054, 4.769, 5.646 and 7.044×104 M−1, respectively. The enthalpy change (ΔH0) and the entropy changes (ΔS0) were calculated to be 1.938 kJ mol−1 and 155.195 J mol−1 K−1 according to the Van’t Hoff equation. The binding average distance, r, between the donor (HSA) and the acceptor (nobiletin) was evaluated and found to be 2.33 nm according to the Förster's theory of non-radiation energy transfer. Changes in the CD and FT-IR spectra were observed upon ligand binding along with a significant degree of tryptophan fluorescence quenching on complex formation. Computational mapping of the possible binding sites of nobiletin revealed the molecule to be bound in the large hydrophobic cavity of subdomain IIA.  相似文献   

9.
M. Ghali 《Journal of luminescence》2010,130(7):1254-20848
The author reports on a strong fluorescence quenching of a model transport protein, bovine serum albumin BSA, when bioconjugated with CdS quantum dots QDs. The 4.4 nm size CdS QDs were synthesized using wet chemistry method and were characterized using UV-vis spectroscopy, scanning electron microscopy SEM and X-ray diffraction XRD techniques. It was found that the BSA fluorescence quenching increases linearly with increasing the CdS QDs concentrations in the range of 3×10−7-2.0×10−6 mol L−1. This quenching is explained in terms of Stern-Volmer equation and is ascribed to static quenching with quenching constant 1.321×104 L mol−1 at 300 K.  相似文献   

10.
The patterns of Vitamin C (ascorbic acid) binding to lysozyme (LYSO) and bovine liver catalase (BLC) were investigated at 298, 308 and 316 K at pH 7.40 using spectrophotometric techniques. The quenching mechanism, binding constant and the number of binding sites were determined by fluorescence experiments. Moreover, the Stern-Volmer fluorescence quenching constant (KSV) of LYSO by Vitamin C was more sensitive to the temperature changes than that of BLC by Vitamin C. The thermodynamic data suggest that hydrogen bonds were the predominant intermolecular forces in the binding reaction. The effect of Vitamin C on the conformation of LYSO or BLC was analyzed using synchronous fluorescence, UV-vis absorption and circular dichroism (CD) spectra.  相似文献   

11.
The interaction between promethazine hydrochloride (PMT) and bovine serum albumin (BSA) in vitro was investigated by means of fluorescence spectroscopy and absorption spectroscopy. The fluorescence of BSA was quenched remarkably by PMT and the quenching mechanism was considered as static quenching by forming a complex. The association constants Ka and the number of binding sites n were calculated at different temperatures. The BSA-PMT binding distance was determined to be less than 8 nm, suggesting that energy transfer from BSA to PMT may occur. The thermodynamic parameters of the interaction between PMT and BSA were measured according to the van’t Hoff equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be −23.62 kJ mol−1 and −0.10 J mol−1 K−1, respectively, which indicated that the interaction of PMT with BSA was driven mainly by van der Waals forces and hydrogen bonds. The binding process was a spontaneous process in which Gibbs free energy change (ΔG) was negative. In addition, the results of synchronous fluorescence spectra and three-dimensional fluorescence spectra showed that binding of PMT with BSA can induce conformational changes in BSA.  相似文献   

12.
The interaction of methyl blue (MB) with human serum albumin (HSA) was studied by fluorescence and absorption spectroscopy. The intrinsic fluorescence of HSA was quenched by MB, which was rationalized in terms of the static quenching mechanism. The number of binding sites and the apparent binding constants at different temperatures were obtained from the Stern-Volmer analysis of the fluorescence quenching data. The thermodynamic parameters determined by the van’t Hoff analysis of the binding constants (ΔH°=39.8 kJ mol−1 and ΔS°=239 J mol−1 K−1) clearly indicate that binding is absolutely entropy-driven and enthalpically disfavored The efficiency of energy transfer and the distance between the donor (HSA) and the acceptor (MB) were calculated as 60% and 2.06 nm from the Förster theory of non-radiation energy transfer.  相似文献   

13.
The mechanism of interaction of trypsin with the sulfathiazole was studied through using fluorescence quenching and UV-visible absorption spectra at pH 7.4. The Stern-Volmer quenching constants, binding constants, number of binding sites and the corresponding thermodynamic parameters ΔHo, ΔSo and ΔGo were calculated at different temperatures. The effect of common metal ions on the constants was also discussed. The results suggest that sulfathiazole can interact strongly trypsin and that there is the formation of trypsin-sulfathiazole complex and the interaction can be explained on the basis of hydrogen bonds and van der Waals forces. The binding distance (r) between the donor (trypsin) and acceptor (sulfathiazole) was 3.52 nm based on the Förster’s non-radiative energy transfer theory. The detection and quantification limits of sulfathiazole were calculated as 2.52 and 8.40 μM in the presence of trypsin, respectively. The relative standard deviation (RSD) was 4.086 % for determinations (n?=?7) of a sulfathiazole solution with the concentration of 7.54 μM.  相似文献   

14.
The interaction between vitexin and human serum albumin (HSA) has been studied by using different spectroscopic techniques viz., fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy under simulated physiological conditions. Fluorescence results revealed the presence of static type of quenching mechanism in the binding of vitexin to HSA. The binding constants (Ka) between vitexin and HSA were obtained according to the modified Stern-Volmer equation. The thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS) were calculated to be -57.29 kJ mol−1 and -99.01 J mol−1 K−1 via the van't Hoff equation, which indicated that the interaction of vitexin with HSA was driven mainly by hydrogen bond and van der Waals forces. Fluorescence anisotropy data showed that warfarin and vitexin shared a common binding site I corresponding to the subdomain IIA of HSA. The binding distance (r) between the donor (HSA) and the acceptor (vitexin) was 4.16 nm based on the Förster theory of non-radioactive energy transfer. In addition, the results of synchronous fluorescence, CD and FT-IR spectra demonstrated that the microenvironment and the secondary structure of HSA were changed in the presence of vitexin.  相似文献   

15.
The binding of pazufloxacin mesilate (PZFX) to human serum albumin (HSA) or lysozyme (Lys) was investigated using spectrophotometric techniques. The intrinsic fluorescence of both HSA and Lys was strongly quenched by PZFX. This effect was rationalized in terms of a static quenching procedure. Negative values of ΔH0 and ΔS0 for the formation of PZFX-HSA or PZFX-Lys complex implied that both hydrogen bonds and hydrophobic interactions might play a significant role in PZFX binding to HSA or Lys. The binding distances deduced from the efficiency of energy transfer were 4.04 and 3.21 nm for PZFX-HSA and PZFX-Lys systems, respectively. Furthermore, association constants and binding mechanism were successfully derived from the synchronous fluorescence spectra. Circular dichroism (CD) spectra and UV/vis detections supported a change in the secondary structure of proteins caused by the interaction of PZFX with HSA or Lys.  相似文献   

16.
The fluorescence quenching of 9-Aminoacridine by certain estrogens and flavonoids in water was studied using absorption, steady state and time-resolved measurements. The bimolecular quenching rate constants for the chosen estrogens and flavonoids were found to be in the range of 3.2-9.2×1011 and 0.36-14.46×1011 M−1s−1, respectively. From lifetime measurement we observed that the quenching was mainly due to static mechanism through ground state complex formation. The binding constant (K) and the number of binding sites (n) were calculated based on the fluorescence quenching data. The free energy change (ΔGet) for electron transfer process was calculated by Rehm-Weller equation.  相似文献   

17.
The interaction between lomefloxacin (LMF) and human lactoferrin (Hlf) was studied by using fluorescence, circular dichroism (CD) spectroscopic and molecular modeling measurements. By the fluorescence quenching results, it was found that the binding constant KA=8.69×105 L mol−1, and number of binding sites n=1.75 at physiological condition. Experimental results observed showed that the binding of LMF to Hlf induced conformational changes of Hlf. The participation of tyrosyl and tryptophanyl residues of protein was also estimated in the drug-Hlf complex by synchronous fluorescence. The quantitative analysis data of far-UV CD spectra from that of the α-helix 37.4% in free Hlf to 30.2% in the LMF-Hlf complex further confirmed that secondary structure of the protein was changed by LMF. Near-UV CD showed perturbations around tryptophan and tyrosine residues which involves perturbations of tertiary structure. The thermodynamic parameters like, ΔH° and ΔS°, have been calculated to be 63.411 kJ mol−1 and 231.104 J mol−1 K−1, respectively. Thermodynamic analysis showed that hydrophobic interactions were the main force in the binding site but the hydrogen bonding and electrostatic interaction could not be excluded which in agreement with the result of molecular docking study. The distance r between donor and acceptor was obtained according to fluorescence resonance energy transfer (FRET) and found to be 1.78 nm. The interaction between LMF and Hlf has been verified as consistent with the static quenching procedure and the quenching mechanism is related to the energy transfer. Furthermore, the study of molecular modeling that LMF could bind to the α-helixes between Pro145-Asn152 and Phe167-Gln172 regions and hydrophobic interaction was the major acting force for the binding site, which was in agreement with the thermodynamic analysis.  相似文献   

18.
托拉塞米(TOR)属于吡啶磺酰脲类袢利尿剂,被广泛有效地用于高血压,心脏衰竭,慢性肾功能衰竭和肝脏疾病的治疗。TOR在治疗过程中易引起的不良反应之一为轻微肠胃不适。然而,TOR与消化蛋白酶(胰蛋白酶和胃蛋白酶)分子间的相互作用鲜有报道。在模拟生理条件下,采用荧光光谱、紫外-可见吸收光谱、圆二色谱和分子对接技术研究了不同温度下托拉塞米(Torasemide, TOR)与胃蛋白酶(Pepsin)和胰蛋白酶(Trypsin)间的相互作用。所有荧光数据均进行了内滤光校正以获得更准确的结合参数。结果表明,TOR-Pepsin和TOR-Trypsin体系的猝灭常数(KSV)均与温度呈负相关,说明TOR与Pepsin及Trypsin之间的作用机制均为静态荧光猝灭。利用紫外-可见吸收光谱、同步荧光光谱、3D荧光光谱和圆二色光谱法考查了TOR对Trypsin和Pepsin构象的影响。结果发现胃蛋白酶或胰蛋白酶中酪氨酸残基的极性改变较色氨基更明显,TOR可改变色氨酸残基的微环境并降低Trypsin和Pepsin中β-折叠结构,进而可能影响其生理功能。分子对接结果表明,TOR与Pepsin的结合位点位于由Asp-32和Asp-215组成的活性中心周围,从而抑制Pepsin活性。而TOR通过疏水作用力结合在Trypsin的口袋型底物结合位点(S1口袋),促进底物进入酶活性中心,最终表现为Trypsin活性升高。该研究探讨了TOR与胃蛋白酶和胰蛋白酶的结合作用和毒性机制,为TOR的安全使用提供重要依据。  相似文献   

19.
ABSTRACT

The interactions between rutin and trypsin were investigated by UV-Vis absorption, CD, fluorescence, resonance light-scattering spectra, synchronous fluorescence, and three-dimensional fluorescence spectra techniques under physiological pH 7.40. Rutin effectively quenched the intrinsic fluorescence of trypsin via static quenching. The enthalpy change and entropy change were estimated to be ?8.23 kJ·mol?1 and 53.66 J·mol?1·K?1 according to the van't Hoff equation. The process of binding rutin to trypsin was a spontaneous molecular interaction procedure. This result indicates that hydrophobic and electrostatic interactions played a major role in stabilizing the complex. The conformation of trypsin was discussed by CD, synchronous, and three-dimensional fluorescence techniques.  相似文献   

20.
The fluorescence and ultraviolet spectroscopies were explored to study the interaction between edaravone (EDA) and bovine serum albumin (BSA) under imitated physiological condition. The experimental results show that the fluorescence quenching mechanism between EDA and BSA is a combined quenching (dynamic and static quenching). The binding constants, binding sites, and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction system were calculated at different temperatures. According to Förster non-radiation energy transfer theory, the binding distance between EDA and BSA was calculated to be 3.10 nm. The effect of EDA on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy. In addition, the effects of some common metal ions Mg2+, Ca2+, Cu2+, and Ni2+ on the binding constant between EDA and BSA were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号