首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
ZnO thin films were epitaxially grown on sapphire (0 0 0 1) substrates by radio frequency magnetron sputtering. ZnO thin films were then annealed at different temperatures in air and in various atmospheres at 800 °C, respectively. The effect of the annealing temperature and annealing atmosphere on the structure and optical properties of ZnO thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL). A strong (0 0 2) diffraction peak of all ZnO thin films shows a polycrystalline hexagonal wurtzite structure and high preferential c-axis orientation. XRD and AFM results reveal that the better structural quality, relatively smaller tensile stress, smooth, uniform of ZnO thin films were obtained when annealed at 800 °C in N2. Room temperature PL spectrum can be divided into the UV emission and the Visible broad band emission. The UV emission can be attributed to the near band edge emission (NBE) and the Visible broad band emission can be ascribed to the deep level emissions (DLE). By analyzing our experimental results, we recommend that the deep-level emission correspond to oxygen vacancy (VO) and interstitial oxygen (Oi). The biggest ratio of the PL intensity of UV emission to that of visible emission (INBE/IDLE) is observed from ZnO thin films annealed at 800 °C in N2. Therefore, we suggest that annealing temperature of 800 °C and annealing atmosphere of N2 are the most suitable annealing conditions for obtaining high quality ZnO thin films with good luminescence performance.  相似文献   

2.
A series of rare earth ternary compounds of Tb1−xEux(TTA)3Dipy (HTTA=thenoyltrifluoroacetone, Dipy=2,2′-dipyridyl) have been synthesized, and the characteristics of the compounds have been performed by DTA-TG, IR, UV and fluorescence spectroscopy. Photoluminescence measurements indicated that the complexes of Eu(III) emit strong red luminescence under UV radiation. IR spectra suggest that complexes have been successfully synthesized, and TG curves indicate that the complexes are stable up to a temperature of about 220 °C. The Eu complex was blended with poly(N-vinylcarbazole) (PVK) and spin coated into films, and electroluminescence devices with the structure of Indium Tin Oxide (ITO)/PVK:Tb1−xEux(TTA)3Dipy/BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline)/aluminum quinoline (AlQ)/Al were fabricated, the luminescence of Eu3+ complexes enhances after doping with Tb3+. Therefore, it may be an effective method to improve the EL intensity of the lanthanide complex.  相似文献   

3.
White organic light-emitting diode (WOLED) with a structure of ITO/poly(N-vinylcarbazole) (PVK)/4,7-diphenyl-1, 10-phenanthroline (Bphen)/tris(8-hydroxyquinoline)aluminum (Alq3)/LiF/Al has been fabricated via the thermal evaporation technique. The electroluminescence (EL) spectrum of the as-fabricated WOLED covers from 380 to 700 nm of the visible light region with a wide blue emission from PVK and an interesting new red emission. The red emission at 613 nm in EL spectra of the WOLED was attributed to electroplex emission at PVK/Bphen interface since it was not observed in photoluminescence spectra. The WOLED showed a Commission International De l'Eclairage coordinate of (0.31, 0.32), which is very close to the standard white coordinate (0.33, 0.33).  相似文献   

4.
A solution processible deep blue light-emitting molecule composed of pyrene and dialkylfluorene units, 1,6-bis(9,9′-dioctylfluorene-2-yl)pyrene (BDOFP) was synthesized and characterized. The synthesized compound was soluble in common organic solvents and the solution gave a smooth thin film after spin coating. The compound was characterized by using thermogravimetric analysis (TGA), differential calorimetry (DSC), UV–visible spectroscopy, fluorescence spectroscopy and cyclic voltammetry. The maximum UV–visible absorption and PL emission of BDOFP thin film were more red-shifted than those of BDOFP solution due to strong intermolecular interaction between flat segments. To improve color purity and film stability BDOFP was doped to a well-known charge-transporting polymer, poly(N-vinylcarbazole) (PVK). BDOFP thin film showed it maximum PL at 457 nm but the thin films of BDOFP doped PVK films showed it at 443 nm. Organic light-emitting diodes were fabricated with the simple structure of ITO/PEDOT:PSS/emitter/BmPyPB/LiF/Al configuration. BDOFP or three kinds of BDOFP:PVK blends with different ratios (10:90, 30:70, 50:50 by weight) were used as the emissive layers and [1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene] (BmPyPB) as the electron-transporting layer. All of light-emitting devices showed their electroluminescence in blue region of spectrum, especially EL using BDOFP: PVK (1:9) showed a deep-blue light emission with CIE coordinates of (0.14, 0.07). Maximum brightness, external quantum efficiency and current efficiency of the device were 500 cd/m2, 0.7% and 0.44 cd/A, respectively.  相似文献   

5.
In this paper, the roles of zinc selenide (ZnSe) sandwiched between organic layers, i.e. organic/ZnSe/aluminum quinoline (Alq3), have been studied by varying device structure. A broad band emission was observed from ITO/poly(N-vinylcarbazole)(PVK)(80 nm)/ZnSe(120 nm)/ Alq3(15 nm)/Al under electric fields and it combined the emissions from the bulk of PVK, ZnSe and Alq3, however, emission from only Alq3 was observed from trilayer device ITO/N,N-bis-(1-naphthyl)-N,N-diphenyl-1, 1-biphenyl-4, 4-diamine (NPB) (40 nm)/ZnSe(120 nm)/ Alq3(15 nm)/Al. Consequently the luminescence mechanism in the ZnSe layer is suggested to be charge carrier injection and recombination. By thermal co-evaporating Alq3 and 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), we get white light emission with a Commission Internationale de l’E clairage (C.I.E) co-ordinates of (0.32, 0.38) from device ITO/PVK(80 nm)/ZnSe(120 nm)/ Alq3:DCJTB(0.5 wt% DCJTB)(15 nm)/Al at 15 V and the device performs stably with increasing applied voltages.  相似文献   

6.
锁钒  于军胜  邓静  蒋亚东  王睿  汪伟志  刘天西 《物理学报》2007,56(11):6685-6690
研究了新型的芴-咔唑共聚物(PFC)与聚乙烯咔唑(PVK)掺杂体系的光致发光和电致发光特性.制备了结构分别为indium-tin-oxide(ITO)/PVK:PFC/bathocuproine(BCP)/tris-(8-hydroxylquinoline)-aluminum (Alq3) /Mg:Ag,ITO/PFC/BCP/Alq3/Mg∶Ag和ITO/PVK/BCP/Alq3/Mg∶Ag的三种有机电致发光器件.对器件的光电特性进行了测试.结果表明,掺杂体系中的PVK有效地抑制了固态膜中PFC激基缔合物的形成.掺杂器件在不同的外加电场作用下发生发光层位置的移动,通过调节外加电场,可以获得从绿光到蓝光的可见光发射.当外加电压大于7V时,掺杂器件的蓝色发光亮度达到1650cd/m2,推测其中可能存在从PVK到PFC的能量传递过程.  相似文献   

7.
Metal-insulator-metal (MIM) capacitors were fabricated using ZrO2 films and the effects of structural and native defects of the ZrO2 films on the electrical and dielectric properties were investigated. For preparing ZrO2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O2 atmosphere with/without UV light irradiation (λ = 193 nm, Deep UV lamp). The ZrO2(∼12 nm) films on Pt(∼100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage (C-V) and current-voltage (I-V) measurements were carried out on MIM structures. ZrO2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.  相似文献   

8.
Copper oxide thin films as solar selective absorbers were conveniently prepared by one-step chemical conversion method. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis-NIR spectra and Fourier transform infrared (FTIR) spectra were employed to characterize the composition, structure and optical properties of thin films. The results indicated that the composition, structure and optical properties of thin films were greatly influenced by reaction temperature, time and concentration of NaOH. When reaction temperature was fixed at 40 °C, the as-prepared films consist of pure cubic Cu2O. The surface morphology of thin films was changed from square-like structure (reaction time ≤ 25 min) to porous belt-like structure (reaction time ≥ 30 min) with the elongation of reaction time. While for thin films prepared at 60 °C and 80 °C, single Cu2O was observed after 5 min reaction. When reaction time is longer than 5 min, CuO appears and the content of CuO is increasing with the elongation of reaction time. With the increase of reaction temperature, the belt-like structure was easily formed for 60 °C/10 min and 80 °C/5 min. Decreasing concentration of NaOH also could result in the formation of CuO and porous belt-like structure. Simultaneously, the film thickness is increasing with the increase of reaction time, temperature and concentration. Films containing CuO with belt-like structure exhibited high absorptance (>0.9), and the emissivity of films increased with elongation of reaction time. Combination of the composition, structure and optical properties, it can be deduced that the porous belt-like structure like as a light trap can greatly enhance absorbance (α), while the composition, thickness and roughness of thin films can greatly influence the emissivity (?). The highest photo-thermal conversion efficiency was up to 0.86 (α/? = 0.94/0.08) for thin films prepared at 80 °C/5 min, which proved that the CuOx thin films can be served as high performance solar selective absorbers.  相似文献   

9.
Undoped and Mg-doped ZnO thin films were deposited on Si(1 0 0) and quartz substrates by the sol-gel method. The thin films were annealed at 873 K for 60 min. Microstructure, surface topography and optical properties of the thin films have been measured by X-ray diffraction (XRD), atomic force microscope (AFM), UV-vis spectrophotometer, and fluorophotometer (FL), respectively. The XRD results show that the polycrystalline with hexagonal wurtzite structure are observed for the ZnO thin film with Mg:Zn = 0.0, 0.02, and 0.04, while a secondary phase of MgO is evolved for the thin film with Mg:Zn = 0.08. The ZnO:Mg-2% thin film exhibits high c-axis preferred orientation. AFM studies reveal that rms roughness of the thin films changes from 7.89 nm to 16.9 nm with increasing Mg concentrations. PL spectra show that the UV-violet emission band around 386-402 nm and the blue emission peak about 460 nm are observed. The optical band gap calculated from absorption spectra and the resistivity of the ZnO thin films increase with increasing Mg concentration. In addition, the effects of Mg concentrations on microstructure, surface topography, PL spectra and electrical properties are discussed.  相似文献   

10.
In this work, samples of poly(N-vinyl carbazole) (PVK)-grafted multiwalled carbon nanotubes (MWCNTs) were synthesized via free radical reaction. The ready-made PVK was allowed to react directly with MWCNTs at 70 °C in the presence of azo-bis-isobutyronitrile (AIBN). The purified deep grey products, which can dissolve in common organic solvents such as chloroform and 1,2-dichlorobenzene (DCB), were then characterized by FTIR spectra, TEM, TGA, elemental analysis, XPS, UV-vis spectra and Raman spectra. It was confirmed that PVK chains were grafted onto the surface of the carbon nanotubes (CNTs). The optical limiting properties of these PVK-grafted MWCNTs samples were investigated by open-aperture z-scan method. All of the samples of PVK-modified carbon nanotubes in chloroform showed optical limiting behavior better than that of C60 in toluene.  相似文献   

11.
Ferroelectric BiFeO3 thin films with Nd-Cr (or Sm-Cr) co-substitution (denoted by BNdFCr and BSmFCr, respectively) were deposited on the Pt(2 0 0)/TiO2/SiO2/Si(1 0 0) substrates by a chemical solution deposition method. X-ray diffraction patterns revealed the formation of BNdFCr and BSmFCr thin films without any secondary phases. The co-substituted BNdFCr (or BSmFCr) thin films, which were annealed at 550 °C for 30 min in N2 atmosphere, exhibited enhanced electrical properties compared to BFO thin films with the remanent polarization (2Pr) and coercive electric field (2Ec) of 196, 188 μC/cm2 and 600, 570 kV/cm with the electric field of 800 kV/cm, respectively. The leakage current densities of BNdFCr and BSmFCr thin films measured at room temperature were approximately three orders of magnitude lower than that of BFO thin film, and the leakage current at room temperature of the thin films exhibited three distinctive conduction behaviors. Furthermore, the values of pulse polarizations [i.e., +(P*-P^) or −(P*-P^)] of BNdFCr and BSmFCr thin films were reasonably unchanged up to 1.4 × 1010 switching cycles.  相似文献   

12.
ZnO thin films were prepared by pulsed laser deposition at room temperature on glass substrates with oxygen pressures of 10-30 Pa. The structural, electrical, and optical properties of ZnO films were studied in detail. ZnO films had an acceptable crystal quality with high c-axis orientation and smooth surface. The resistivity was in the 102 Ω cm order for ZnO films, with the electron concentration of 1016-1017 cm−3. All the films showed a high visible transmittance ∼90% and a high UV absorption about 90-100%. The UV emission ∼390 nm was observed in the photoluminescence spectra. The oxygen pressures in the 10-30 Pa range were suitable for room temperature growth of high-quality ZnO films.  相似文献   

13.
N-doped ZnO films were deposited by RF magnetron sputtering in N2/Ar gas mixture and were post-annealed at different temperatures (Ta) ranging from 400 to 800 °C in O2 gas at atmospheric pressure. The as-deposited and post-annealed films were characterized by their structural (XRD), compositional (SIMS, XPS), optical (UV-vis-NIR spectrometry), electrical (Hall measurements), and optoelectronic properties (PL spectra). The XRD results authenticate the improvement of crystallinity following post-annealing. The weak intensity of the (0 0 2) reflection obtained for the as-deposited N-doped ZnO films was increased with the increasing Ta to become the preferred orientation at higher Ta (800 °C). The amount of N-concentration and the chemical states of N element in ZnO films were changed with the Ta, especially above 400 °C. The average visible transmittance (400-800 nm) of the as-deposited films (26%) was increased with the increasing Ta to reach a maximum of 75% at 600 °C but then decreased. In the PL spectra, A0X emission at 3.321 eV was observed for Ta = 400 °C besides the main D0X emission. The intensity of the A0X emission was decreased with the increasing Ta whereas D0X emission became sharper and more optical emission centers were observed when Ta is increased above 400 °C.  相似文献   

14.
新型物理喷束淀积技术制备富勒烯薄膜   总被引:2,自引:1,他引:1  
王德嵘  柯国庆 《光学学报》1996,16(6):83-786
建立了一套新型物理喷束淀积装置,并且成功地进行了薄膜制备工作,所制备的薄膜包括C60,C70,PVK,PVK/C60等薄膜,并测量了物理喷束淀积技术制备得的C60薄膜,PVK/C60混合膜的吸收光谱,荧光光谱,时间分辨率荧光光谱,与C60等薄膜的高真空蒸发膜的相应光谱进行了比较,结果表明,物理喷束淀积可以制备具有很好质量的高抗光损伤薄膜,薄膜的荧光衰减特性与蒸发膜有很大差别。采用该法制备的PVK/  相似文献   

15.
A simple and inexpensive spray pyrolysis technique (SPT) was employed for the synthesis of nanocrystalline zinc oxide (ZnO) thin films onto soda lime glass and tin doped indium oxide (ITO) coated glass substrates at different substrate temperatures ranging from 300 °C to 500 °C. The synthesized films were polycrystalline, with a (0 0 2) preferential growth along c-axis. SEM micrographs revealed the uniform distribution of spherical grains of about 80-90 nm size. The films were transparent with average visible transmittance of 85% having band gap energy 3.25 eV. All the samples exhibit room temperature photoluminescence (PL). A strong ultraviolet (UV) emission at 398 nm with weak green emission centered at 520 nm confirmed the less defect density in the samples. Moreover, the samples are photoelectrochemically active and exhibit the highest photocurrent of 60 μA, a photovoltage of 280 mV and 0.23 fill factor (FF) for the Zn450 films in 0.5 M Na2SO4 electrolyte, when illuminated under UV light.  相似文献   

16.
Cu-doped ZnO films with hexagonal wurtzite structure were deposited on silicon (1 1 1) substrates by radio frequency (RF) sputtering technique. An ultraviolet (UV) peak at ∼380 nm and a blue band centered at ∼430 nm were observed in the room temperature photoluminescent (PL) spectra. The UV emission peak was from the exciton transition. The blue emission band was assigned to the Zn interstitial (Zni) and Zn vacancy (VZn) level transition. A strong blue peak (∼435 nm) was observed in the PL spectra when the αCu (the area ratio of Cu-chips to the Zn target) was 1.5% at 100 W, and ZnO films had c-axis preferred orientation and smaller lattice mismatch. The influence of αCu and the sputtering power on the blue band was investigated.  相似文献   

17.
陈飞鹏  徐斌  赵祖金  田文晶  吕萍 《中国物理 B》2010,19(3):37801-037801
White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabricated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/ tris(8-hydroxyquinolinate)aluminium (Alq3)/LiF/Al exhibits white light emission with Commission Internationale de l'éclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402~cd/m2. The investigation reveals that the white light is composed of a blue--green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films.  相似文献   

18.
PVK/C_(60)组合体系薄膜的拉曼光谱和荧光光谱研究   总被引:1,自引:0,他引:1  
我们采用物理喷束淀积技术制备了C60、C70及聚乙烯咔唑PVK/C60的混合和分层薄膜,拉曼光谱的测量表明,这种技术所制备的富勒烯薄膜中,富勒烯的笼型结构仍保持完整,而在PVK/C60组合薄膜中,拉曼光谱及荧光光谱测量表明:在PVK和C60分子之间存在激发传递过程,在混合膜中,这种激发传递过程要明显强于分层组合薄膜。  相似文献   

19.
This communication reports the spectroscopic characterizations of mixed Langmuir-Blodgett (LB) films of non-amphiphilic N,N-bis (2,5-di-tert-butylphenyl)- 3,4,9-perylenedicarboximide (DBPI) molecules, mixed with polymethyl methacrylate (PMMA) and stearic acid (SA). J- aggregates of DBPI molecules in the mixed LB films have been confirmed by UV-Vis absorption spectroscopic study. Formation of organized structure of molecular stacking in the mixed LB films gives rise to the strong excimeric emission, which is manifested by a broad structureless band in the longer wavelength region of the fluorescence spectra and is confirmed by excitation spectroscopic study. A weak hump at around 576 nm due to monomeric emission is observed in the fluorescence spectra of 0.1 M of DBPI-PMMA mixed LB films of lower number of layers. The intensity of the 0-0 band at 530 nm in the fluorescence spectra is observed to be a function of the molefraction, number of layers, surface pressure of lifting and the matrix materials.  相似文献   

20.
The surface chemical composition and surface properties of collagen/poly(vinyl pyrrolidone) (PVP) blended films before and after UV irradiation (λ = 254 nm) were investigated using X-ray Photoelectron Spectroscopy (XPS), FTIR-ATR spectroscopy and Atomic Force Microscopy (AFM).The XPS results showed that collagen is enriched on the surface of the collagen/PVP blend. The surface composition of the collagen film was changed more by UV irradiation than the surface composition of the collagen/PVP blend.FTIR-ATR spectra showed that the positions of the amide bands in collagen are more altered after UV irradiation than those for the collagen/PVP blends.AFM images showed that the collagen surface is ordered contrary to PVP. The blend surface was similar to the pure collagen surface and confirms that there is more collagen present at the surface (higher concentration of collagen at the surface compared to PVP). UV irradiation caused only the small changes in the surface morphology of the collagen/PVP films. All of the results confirm that the surface of the collagen/PVP blend is more photoresistant than collagen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号