首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LiCaBO3 was synthesized by high-temperature solid-state reaction. The influence of different rare earth dopants, i.e. Dy3+, Tb3+, Tm3+ and Ce3+, on thermoluminescence (TL) of LiCaBO3 phosphor was discussed. We studied the TL properties and some dosimetric characteristics of Ce3+-activated LiCaBO3 phosphor in detail. The effect of the concentration of Ce3+ on TL was investigated, the result of which showed that the optimum Ce3+ concentration was 1 mol%. The TL kinetic parameters of LiCaBO3:0.01Ce3+ were studied by computer glow curve deconvolution (CGCD) method. The three-dimensional (3D) TL emission spectra were also studied, peaking at 431 and 474 nm due to the characteristic transition of Ce3+. We also studied the linearity, annealing condition, reproducibility, fading and different heating rate of the LiCaBO3:0.01Ce3+ phosphor.  相似文献   

2.
The thermo-luminescence (TL) of rare earth ions RE3+ (RE=Ln, excluding Pm, Eu and Lu) co-doped phosphors CaGa2S4:Eu2+, RE3+ was studied between room temperature and 300 °C, and 3D thermo-luminescence of the phosphors were measured from room temperature to 400 °C. The basic material CaGa2S4:Eu2+, showed at least two bands in the TL glow curve. Changing the auxiliary activator RE3+ (rare earth ion), intensities and the positions of the TL glow curve peaks were affected significantly. For the phosphors with long afterglow, auxiliary activator such as Ce3+, Pr3+, Gd3+, Tb3+, Ho3+, or Y3+ created some new defects in these compounds at lower trap levels and enhanced their TL intensities. The Nd3+ or Er3+ auxiliary activator only enhanced TL intensities to a low extent, so these two phosphors have short persistent luminescence at room temperature. TL intensities of La3+, Sm3+, Tm3+ or Yb3+ co-doped phosphors were suppressed greatly and no afterglow was shown. The relationship between auxiliary activators and corresponding thermo-luminescence curves of phosphors CaGa2S4:Eu2+, RE3+ are discussed in detail. According to our results, suitable activation energy and enough high corresponding trap density are necessary for the phosphor with long afterglow.  相似文献   

3.
Five Na2SO4:RE3+ phosphors activated with rare-earth (RE) ions (RE3+=Ce3+, Sm3+, Tb3+, Dy3+ and Tm3+) were synthesized by heating natural thenardite Na2SO4 from Ai-Ding Salt Lake, Xinjiang, China with small amounts of rare-earth fluorides, CeF3, SmF3, TbF3, DyF3 and TmF3, at 920 °C in air. The photoluminescence (PL) and optical excitation spectra of the obtained phosphors were measured at 300 and 10 K. In the PL spectrum of Na2SO4:Ce3+ at 300 K, two overlapping bands with peaks at 335 and 356 nm due to Ce3+ were first observed. Narrow bands observed in PL and excitation spectra of Na2SO4:RE3+ (RE3+=Sm3+, Tb3+, Dy3+ and Tm3+) phosphors were well identified with the electronic transitions within the 4fn (n=5, 8, 9 and 12) configurations of RE3+. The existence of excitation bands with high luminescence efficiency at wavelengths shorter than 230 nm is characteristic of Na2SO4:RE3+ (RE3+=Sm3+, Tb3+, Dy3+ and Tm3+) phosphors. The obtained results suggest that these phosphors are unfavorable as the phosphor for usual fluorescence tubes, i.e., mercury discharge tubes, but may be favorable as the phosphor for UV-LED fluorescent tubes and as cathodoluminescence, X-ray luminescence and thermoluminescence phosphors.  相似文献   

4.
This paper reports the thermoluminescence (TL) properties of rare earth doped lithium magnesium borate (LMB) polycrystalline phosphor. LMB phosphor has been prepared by high temperature solid state diffusion method. Among all the rare earth doped LMB phosphors, terbium doped material has shown maximum TL sensitivity with a broad dosimetric glow peak at 240 °C. near the tissue equivalent TL phosphor with terbium dopant has about four times the TL sensitivity of TLD-100. The main dosimetric properties such as glow curve stability, TL response versus absorbed dose, post-irradiation storage stability, and reusability are investigated. This TL material has a linear dose response up to 103 Gy, negligible storage fading and a simple annealing procedure for reuse. The TL emission spectra of LMB:Tb3+ showed broad green emission at 544 nm, which merged with host emission. The characteristic Tb3+ emissions are seen in the photoluminescence (PL) spectra.  相似文献   

5.
The present paper reports that TL glow curve and kinetic parameter of Eu3+ doped SrY2O4 phosphor irradiated by beta source. Sample was prepared by solid state preparation method. Sample was characterized by XRD analysis and particle size was calculated by Debye–Scherrer formula. The sample was irradiated with Sr-90 beta source giving a dose of 10 Gy and the heating rate used for TL measurements are 6.7 °C/s. The samples display good TL peaks at 106 °C, 225 °C and 382 °C. The corresponding kinetic parameters are calculated. The photoluminescence excitation spectrum at 247 and 364 nm monitored with 400 nm excitation and the corresponding emission peaks at 590, 612 and 624 nm are reported.  相似文献   

6.
Polycrystalline KMgSO4Cl:Eu and Na5(PO4)SO4:Ce phosphors prepared by a wet chemical method have been studied for its photoluminescence (PL) and thermoluminescence (TL) characteristics. The TL glow curve of the compound has a prominent peak at 200 °C and may be useful for TL study. TL sensitivity of the KMgSO4Cl:Eu phosphor is found to be 1.7 times less than that of TLD—CaSO4:Dy. The presence of bands at around 420, 435 and 445 nm in the PL emission spectra of the phosphor suggests the presence of Eu2+ in the host compound. Moreover a TL glow curve of the Na5(PO4)SO4:Ce gives a better understanding of the TL mechanism (peaks at 271 and 310 °C) involved in the concerned phosphor. The PL emission spectra are observed at 382 nm for the various concentrations. In this paper we report PL and TL characteristics of KMgSO4Cl:Eu halosulphate and Na5(PO4)SO4:Ce phosphate sulphate phosphors first time.  相似文献   

7.
Long persistent SrAl2O4:Eu2+ phosphors co-doped with Dy3+ were prepared by the solid state reaction method. The main diffraction peaks of the monoclinic structure of SrAl2O4 were observed in all the samples. The broad band emission spectra at 497 nm for SrAl2O4:Eu2+, Dy3+ were observed and the emission is attributed to the 4f65d1 to 4f7 transition of Eu2+ ions. The samples annealed at 1100–1200 °C showed similar broad TL glow curves centered at 120 °C. The similar TL glow curves suggest that the traps responsible for them are similar. The long afterglow displayed by the phosphors annealed at different temperatures, may be attributed to the Dy3+ ions acting as the hole trap levels, which play an important role in prolonging the duration of luminescence.  相似文献   

8.
Magnesium aluminate doped with Tb3+ (MgAl2O4:Tb3+) was prepared by combustion synthesis. Three thermoluminsence (TL) peaks at 120, 220 and 340 °C were observed. PL and TL emission spectrum shows that Tb3+ acts as the luminescent centre. Optically stimulated luminescence (OSL) was observed when stimulated by 470 nm blue light.Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the TL and OSL processes in MgAl2O4:Tb3+. Two defect centres were identified in irradiated MgAl2O4:Tb3+ phosphor by ESR measurements which was carried out at room temperature and these were assigned to V and F+ centres. V centre (hole centre) is correlated to 120 and 220 °C TL peaks and F+ centre (electron centre), which acts as a recombination centre is correlated to 120, 220 and 340 °C.  相似文献   

9.
The Sr2Si5N8:Eu2+ phosphors, both undoped and doped with Tm3+, were synthesized by high temperature solid-state method. The XRD pattern shows that only Sr2Si5N8 phase is formed whatever Tm3+ was doped or not. The peak positions of both phosphors are centered at 612 nm which is assigned to the 4f65d→4f7 transition of Eu2+. It implies that the crystal field, which affects the 5d electron states of Eu2+, is not changed dramatically after the phosphor is doped with Tm3+. The afterglow time is about 10 min after Tm3+ ion is introduced into the phosphor. The concentration of Tm3+ has little influence on the afterglow time of the phosphor. The depths of trap energy level of the two phosphors were calculated based on the TL spectra. The depths of Sr2Si5N8:Eu2+ and Sr2Si5N8:Eu2+, Tm3+ are 1.75 and 1.01 eV, respectively.  相似文献   

10.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

11.
This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2−xyGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D07F2 transitions and the photoluminescence excitation spectra show a broad band located around 220–270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.  相似文献   

12.
This paper reports on the afterglow mechanism and thermoluminescence (TL) of a red-emitting CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion upon irradiation by visible light (D65 lamp). In the TL glow curve of the CaS:Eu2+,Pr3+ phosphor, a TL peak was observed near 120 °C. The luminescence center of the CaS:Eu2+,Pr3+ phosphor was the Eu2+ ion and the trap depth of the CaS:Eu2+,Pr3+ phosphor with the cation vacancy (Trap 1) which formed by incorporation of the Pr3+ ion was 0.202 eV. A cation vacancy (Trap 2) was formed by incorporation of the Li+ ion in the CaS:Eu2+,Pr3+ phosphor. In the TL glow curve of the CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion, two TL peaks were observed near 120 and 200 °C. The TL luminance of the CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion increased with an increase in the initial Li/Ca atomic ratio. The two TL peaks moved to the high-temperature side with an increase in heating rate. The cation vacancy (Trap 2) calculated from the Hoogenstraaten method was 0.118 eV. The afterglow time of the CaS:Eu2+,Pr3+ phosphor with incorporated Li+ ion was prolonged by generation of a shallow trap.  相似文献   

13.
A new phosphor in the Cl-F system doped with Dy, Ce and Eu has been reported. Characterization of this phosphor using XRD, PL and TL techniques is described. Polycrystalline Na6(SO4)2FCl:Dy; Na6(SO4)2FCl:Ce and Na6(SO4)2FCl:Eu phosphors prepared by a solid state diffusion method have been studied for their X-ray diffraction, photoluminescence (PL) and thermoluminescence (TL)characteristics. The PL excitation and emission spectra of phosphors were obtained. Dy3+ emission in the host at 475 and 570 nm is observed due to 4F9/26H15/2 and 4F9/26H13/2 transition, respectively, whereas the PL emission spectra of Na6(SO4)2FCl:Ce phosphor shows the Ce3+ emission at 322 nm due to 5d→4f transition of Ce3+ ion. In Na6(SO4)2FCl:Eu lattice, Eu2+ as well as Eu3+ emissions are observed. The emission of europium ion in this compound exhibits the blue as well as red emission. The TL glow curves of the same compounds have the simple structure with a prominent peak at 150, 175 and 200 °C. TL response, fading, reusability and trapping parameters of the phosphors are also studied. The TL glow curves of γ-irradiated Na6(SO4)2FCl sample show one glow peak indicating that only one set of traps is being activated within the particular temperature range each with its own value of activation energy (E) and frequency factor (s). The trapping parameters associated with the prominent glow peak are calculated using Chen’s half width method. The release of hole/electron from defect centers at the characteristic trap site initiates the luminescence process in these materials. The intensity of the TL glow peaks increases with increase of the added γ-ray dose to the samples.  相似文献   

14.
Samples of natural andalusite (Al2SiO5) crystal have been investigated in terms of thermoluminescence (TL) and electron paramagnetic resonance (EPR) measurements. The TL glow curves of samples previously annealed at 600 °C for 30 min and subsequently gamma-irradiated gave rise to four glow peaks at 150, 210, 280 and 350 °C. The EPR spectra of natural samples heat-treated at 600 °C for 30 min show signals at g=5.94 and 2.014 that do not change after gamma irradiation and thermal treatments. However, it was observed that the appearance of a paramagnetic center at g=1.882 for the samples annealed at 600 °C for 30 min followed gamma irradiation. This line was attributed to Ti3+ centers. The EPR signals observed at g=5.94 and 2.014 are due to Fe3+. Correlations between EPR and TL results of these crystals show that the EPR line at g=1.882 and the TL peak at 280 °C can be attributed to the same defect center.  相似文献   

15.
BaAl2O4:Eu2+,Nd3+,Gd3+ phosphors were prepared by a combustion method at different initiating temperatures (400–1200 °C), using urea as a comburent. The powders were annealed at different temperatures in the range of 400–1100 °C for 3 h. X-ray diffraction data show that the crystallinity of the BaAl2O4 structure greatly improved with increasing annealing temperature. Blue-green photoluminescence, with persistent/long afterglow, was observed at 498 nm. This emission was attributed to the 4f65d1–4f7 transitions of Eu2+ ions. The phosphorescence decay curves were obtained by irradiating the samples with a 365 nm UV light. The glow curves of the as-prepared and the annealed samples were investigated in this study. The thermoluminescent (TL) glow peaks of the samples prepared at 600 °C and 1200 °C were both stable at ∼72 °C suggesting that the traps responsible for the bands were fixed at this position irrespective of annealing temperature. These bands are at a similar position, which suggests that the traps responsible for these bands are similar. The rate of decay of the sample annealed at 600 °C was faster than that of the sample prepared at 1200 °C.  相似文献   

16.
The present paper describes the synthesis of europium-doped calcium aluminate phosphor using the combustion method. An efficient blue emission phosphor can be prepared at reaction temperatures as low as 500 °C in a few minutes by this method. Characterization of the powder was done by X-ray diffraction, transmission electron microscopy, scanning electron microscope analysis and the optical properties were studied by photoluminescence spectra. Thermoluminescence (TL) studies also have been carried out on CaAl12O19:Eu2+ phosphor. The TL glow curve shows peaks at 174 and 240 °C. Defect centres formed in irradiated phosphor have been studied using the technique of electron spin resonance. Step annealing measurements indicate that one of the annealing stages of a defect centre appear to correlate with the release of carriers resulting in TL peak at 174 °C. The centre is characterized by an isotropic g-value of 2.0046 and is assigned to a F+ centre.  相似文献   

17.
Electron spin resonance (ESR), thermoluminescence and photoluminescence studies in Eu2+ activated Sr5(PO4)3Cl phosphor are reported in this paper. The Sr5(PO4)3Cl:Eu2+ phosphor is twice as sensitive as the conventional CaSO4:Dy phosphor used in thermoluminescence dosimetry of ionizing radiations. It has a linear response, simple glow curve, emission peaking at 456 nm. The defect centers formed in the Sr5(PO4)3Cl:Eu2+phosphor are studied by using the technique of ESR. A dominant TL glow peak at 430 K with a smaller shoulder at 410 K is observed in the phosphor. ESR studies indicate the presence at three centers at room temperature. Step annealing measurements show a connection between one of the centers and the dominant glow peak at 430 K. The 430 K TL peak is well correlated with center I, which is tentatively identified as (PO4)2− radical.  相似文献   

18.
《Radiation measurements》2000,32(2):123-128
MgSO4:Dy, MgSO4:Tm and MgSO4:Dy,Mn thermoluminescence (TL) phosphors have been prepared and their emission spectra were measured using a linear heater and optical multichannel analyzer. Emission bands at about 480, 580 and 660 nm of MgSO4 doped with Dy were observed in three dimension (3D) glow curve. Emission bands about 360, 460, and 660 nm were observed in a 3D glow curve of MgSO4 doped with Tm. The emission spectra of MgSO4:Dy and MgSO4:Tm are attributed to the characteristic emission wavelengths from transitions of Dy3+ and Tm3+ respectively. The results show that the structures of traps in matrix materials determine the activation energy distribution and dopant energy levels of rare earth ions are related with the emission spectrum wavelengths of sulfate phosphors. The intensities of the glow peaks in both bands at about 480 and 580 nm in MgSO4 doped Dy and Mn were dramatically reduced in comparison with that of MgSO4 doped Dy except above 300°C. It means that the trapping structures of MgSO4 :Dy phosphor has greatly been altered by the co-dopant Mn but no change is observed in wavelengths of the emission spectra.  相似文献   

19.
Blue-emitting europium-ion-doped MgSrAl10O17 phosphor, prepared using the combustion method, is described. An efficient phosphor can be prepared by this method in a muffle furnace maintained at 500 °C in a very short time of few minutes. The phosphor is characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. Photoluminescence (PL) spectra revealed that europium ions were present in divalent oxidation state. The thermoluminescence (TL) glow curve shows two peaks at around 178 and at 354 °C. The defect centres formed in the phosphor are studied using electron spin resonance (ESR). The ESR spectrum indicates the presence of Fe3+ ions in the non-irradiated system. Irradiated MgSrAl10O17:Eu exhibits lines due to radiation-sensitive Fe3+ ion and a defect centre. The centre is characterized by an isotropic g-value of 2.0012 and is assigned to a F+ centre. The radiation-sensitive Fe3+ ion appears to correlate with the main TL peak at 178 °C. During irradiation an electron is released from Fe2+ and is trapped at an anion vacancy to form F+ centre. During heating, an electron is liberated from the defect centre and recombines with Fe3+ emitting light.  相似文献   

20.
Different phases of Eu3+ activated gadolinium oxide (Gd (OH)3, GdOOH and Gd2O3) nanorods have been prepared by the hydrothermal method with and without cityl trimethyl ammonium bromide (CTAB) surfactant. Cubic Gd2O3:Eu (8 mol%) red phosphor has been prepared by the dehydration of corresponding hydroxide Gd(OH)3:Eu after calcinations at 350 and 600 °C for 3 h, respectively. When Eu3+ ions were introduced into Gd(OH)3, lattice sites which replace the original Gd3+ ions, a strong red emission centered at 613 nm has been observed upon UV illumination, due to the intrinsic Eu3+ transition between 5D0 and 7F configurations. Thermoluminescence glow curves of Gd (OH)3: Eu and Gd2O3:Eu phosphors have been recorded by irradiating with gamma source (60CO) in the dose range 10-60 Gy at a heating rate of 6.7 °C sec−1. Well resolved glow peaks in the range 42-45, 67-76, 95-103 and 102-125 °C were observed. When γ-irradiation dose increased to 40 Gy, the glow peaks were reduced and with increase in γ-dose (50 and 60 Gy) results the shift in first two glow peak temperatures at about 20 °C and a new shouldered peak at 86 °C was observed. It is observed that there is a shift in glow peak temperatures and variation in intensity, which is mainly attributed to different phases of gadolinium oxide. The trapping parameters namely activation energy (E), order of kinetics (b) and frequency factor were calculated using peak shape and the results are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号