首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A irreversible Hg2+ selective ratiometric fluorescence probe FR, a fluorescein fluorophore linked to a rhodamine B hydrazide by a thiourea spacer, was designed and synthesized. The developed probe FR exhibited great ratiometric fluorescence enhancement and remarkable yellow-magenta color change toward Hg2+ with excellent selectivity in aqueous acetone solution, and the ratiometric fluorescence response to Hg2+ was not interfered by other metal cations including Fe3+, Co2+, Ni2+, Cr3+, Zn2+, Pb2+, Cd2+, Ca2+, Mg2+, Ba2+ and Mn2+. The linear range and the detection limit of this supposed ratiometric fluorescence method for Hg2+ were 0.0–10.0 × 10−6 and 5 × 10−8 M, respectively.  相似文献   

2.
A novel fluorescent chemosensor rhodamine B phenyl hydrazide (RBPH) for Hg2+ was designed and synthesized. This probe is highly sensitive, selective, and irreversible for Hg2+ and exhibits fluorescent response at 580 nm. RBPH also displayed detectable color change from colorless to pink upon treatment with Hg2+. This property has been utilized as naked eye detection for Hg2+ in various industrial samples. Fluorescence microscopic experiments demonstrated that this chemosensor is cell permeable and can be used for fluorescence imaging of Hg2+ in cellular media. This probe can detect Hg2+ with good linear relationships from 1 to 100 nM with r?=?0.99983 and the limit of detection were found to be 0.019 nM with?±?0.91 % RSD at 10 nM concentrations.  相似文献   

3.
Fan J  Peng X  Wang S  Liu X  Li H  Sun S 《Journal of fluorescence》2012,22(3):945-951
Detection of Hg2+ in complex natural environmental conditions is extremely challenging, and no entirely successful methods currently exist. Here we report an easy-to-prepare fluorescent sensor B3 with 2-aminophenol as Hg2+ receptor, which exhibits selective fluorescence enhancement toward Hg2+ over other metal ions. Especially, the fluorescence enhancement was unaffected by anions and cations existing in environment and organism. Moreover, B3 can detect Hg2+ in sulphide-rich environments without cysteine, S2- or EDTA altering the fluorescence intensity. Consequently, B3 is capable of distinguishing between safe and toxic levels of Hg2+ in more complicated natural water systems with detection limit ≤2 ppb.  相似文献   

4.
l-Tryptophan-capped carbon quantum dots (l-CQDs) were facilely synthesized through “green” methodology, and the obtained material was utilized as a sensitive and selective fluorescence sensor for mercury ion (Hg2+) in pure aqueous solutions. Carboxyl-functionalized CQDs were first green synthesized by a one-step hydrothermal route, and l-tryptophan was then attached to CQDs via direct surface condensation reaction in aqueous solution at room temperature. The as-synthesized l-CQDs had an average size of ca. 5 nm with a good dispersity in water, and exhibited a favorable selectivity for Hg2+ ions over a range of other common metal cations in aqueous solution (10 mM PBS buffer, pH 6.0). Upon the addition of Hg2+, a complete fluorescence quenching (ON–OFF switching) of l-CQDs was evident from the fluorescence titration experiment, and the fluorescence detection limit of Hg2+ was calculated to be 11 nM, which indicated that the obtained environmentally friendly l-CQDs had sensitive detection capacity for Hg2+ in aqueous solution.  相似文献   

5.
Based on resonance energy transfer (FRET) from dansyl to rhodamine 101, a new fluorescent probe (compound 1) containing rhodamine 101 and a dansyl unit was synthesized for detecting Hg2+ through ratiometric sensing in DMSO aqueous solutions. This probe shows a fast, reversible and selective response toward Hg2+ in a wide pH range. Hg2+ induced ring-opening reactions of the spirolactam rhodamine moiety of 1, leading to the formation of fluorescent derivatives that can serve as the FRET acceptors. Very large stokes shift (220 nm) was observed in this case. About 97-fold increase in fluorescence intensity ratio was observed upon its binding with Hg2+.  相似文献   

6.
A new macrocyclic receptor 1 having [1,8]-naphthyridine fluorophore is designed and synthesized for selective fluorescence sensing of Cd2+. Receptor 1 selectively responds to Cd2+ over other tested metal ions via a large enhancement of emission intensity due to the cation-induced CHEF (chelation enhanced fluorescence) effect. Receptor 1 although exhibits some affinity towards Zn2+, it selectively binds Cd2+ over Zn2+. Binding and selectivity were examined by 1H-NMR, fluorescence, UV-vis, mass and IR-spectroscopic techniques.  相似文献   

7.
A colorimetric and fluorescent indicator based on cinnamamide group-containing rhodamine derivative was synthesized for the detection of Hg2+. The rhodamine B and cinnamamide were connected via ethylenediamine as a bridging molecule through a condensation reaction to obtain a colorimetric and fluorescent indicator for the detection of Hg2+ in H2O-EtOH (4:1, v/v). The indicator was excellent in the selectivity of Hg2+ and was almost unaffected by other common ions such as Na+, K+, Mg2+, Fe3+, Cu2+, Zn2+, Cr3+. The Hg2+-containing aqueous solution turned from colorless to red within 7 min after the addition of the indicator, and had an absorption peak at 564 nm in UV-vis, which implies a significant colorimetric phenomenon. Their characteristic peaks varied with the Hg2+ content, and they reached a linear relationship at low concentrations. The binding stoichiometry proved to be 1:1. The lowest detection limit was 4.1?×?10?7 mol/L, ranging from acidic to neutral.  相似文献   

8.
A new compound, 1-[p-(dimethylamino)benzoyl]-4′-phenyl-semicarbazide (1) was synthesized and showed highly selective response to Cu2+ over other metal ions such as Pb2+, Mg2+, Fe2+, Co2+, Zn2+, Cd2+, Hg2+, Ni2+, Ca2+, Ag+, Na+, K+, and Li+. The control compound, 1-[p-(dimethylamino)benzoyl]-4-phenyl-thiosemicarbazide (2), showed different fluorescence spectral response to Cu2+. A 1:1 complex between Cu2+ and 1 was formed while 1:1 and 1:2 complexes between Cu2+ and 2 were formed. The binding model between the receptor (1 or 2) and Cu2+ was supported by IR spectra, mass spectra, and computation model. 1 possessed higher selectivity towards Cu2+ compared with 2 owing to the difference of complexation ability between urea and thiourea groups.  相似文献   

9.
Novel pyrene functionalized mesoporous core–shell structured silica (denoted as SiO2@mSiO2/Py-Si) was designed and synthesized as a highly selective fluorescent chemosensor for detecting Hg2+ in water. The core–shell structured silica was prepared by a simple sol–gel process through coating SiO2 nanospheres with a layer of ordered mesoporous silica. The surface of outer mesoporous silica shell was then further functionalized by the fluorescent chromophore alkoxysilane modified pyrene (Py-Si). XRD data confirmed that the hexagonal ordered mesoporous structure was preserved after functionalization. The chemosensing material successfully exhibited a remarkable “turn on” response toward Hg2+ over miscellaneous metal ions. A good linear response towards Hg2+ in the concentration range of 10?8–10?4 M was constructed with R2=0.9913. Most importantly, a satisfactory detection limit of 3.4×10?9 g mL?1 (down to ppb level) was obtained, which is 100 times lower than our previous report of covalently grafted Py-OH to the bulk mesoporous silica SBA-15. These results indicated that SiO2@mSiO2/Py-Si can be used as a highly selective and sensitive fluorescence sensor for Hg2+.  相似文献   

10.
《Physics letters. A》1986,117(4):185-188
A delayed-coincidence method with pulsed electron excitation was used to measure the radiative lifetimes of some 5d96snl states of Hg+. Radiative lifetimes of five long lived 5d86s2 states of Hg2+ and some Hg2+ spectral line transition probabilities are also reported. The data are obtained for the first time.  相似文献   

11.
A fluorescent assay of Hg2+ in neutral aqueous solution was developed using N-[p-(dimethylamino)benzamido]-N′-phenylthiourea (1). 1’s fluorogenic chemodosimetric behaviors towards various metal ions were studied and a high sensitivity as well as selectivity was achieved for Hg2+. It was because of a strongly fluorescent 1,3,4-oxadiazoles which was produced by the Hg2+ promoted desulfurization reaction. The spectra of ESI mass and IR provided evidences for this reaction. According to fluorescence titration, a good linear relationship ranging from 1.0 × 10−7 to 2.0 × 10−5 mol l−1 was obtained with the limit of detection as 3.1 × 10−8 mol l−1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
The present article describes the solvatochromic effect including solvent system selection, time study and a detailed complexation study along with exploration of extraction properties of 5,11,17,23-tetrakis[(diethylamino)methyl]-25,26,27,28-tetrahydroxycalix[4]arene (4) that bears nitrogen atom as a donor group available for chelating metal ions. Complexation properties of 4 toward selected transition metal ions have been investigated by UV-visible and fluorescence spectroscopies. The% efficiency of 4 toward selected transition metal ions was found in order Cu2+> Ni2+> Hg2+> Zn2+> Co2+> Cd2+> Pb2+. It has been noticed that 4 is not only proved to be an efficient Cu2+ selective chromoionophore but also possesses an effective extraction property for transferring Cu2+ ions from an aqueous to dichloromethane layer. The FT-IR spectroscopic method has also been applied for further confirmation of the complexation phenomenon of 4 with Cu2+ ion and found adequate.  相似文献   

13.
The recognition ability of N-Furfurylsalicylaldimine (HL) toward various cations (Pb2+, Hg2+, Ba2+, Cd2+, Ag+, Zn2+, Cu2+, Ni2+, Co2+, K+, Sr2+, and Na+) has been studied by UV–Vis and fluorescence spectroscopy. The compound showed highly selective fluorescence signaling behaviour for Zn2+ ions in methanol-water medium based on CHEF process and is capable of distinguishing Zn2+ from Cd2+ ion. From single crystal X-ray analysis it is revealed that a Zn2+ ion binds two ligand molecules through imine nitrogen and phenolate oxygen atom.
Figure
N-Furfurylsalicylaldimine as a selective sensing of Zn2+ ion through CHEF process. The x-ray structure of the receptor-Zn(II) complex shows 2:1 stochiometry  相似文献   

14.
Du J  Fan J  Peng X  Li H  Wang J  Sun S 《Journal of fluorescence》2008,18(5):919-924
A highly selective PET fluorescent sensor B1 for Hg2+ containing a BODIPY fluorophore and a NS2O2 penta-chelating receptor has been synthesized and characterized. Its absorption maximum wavelength (498 nm) and emission maximum wavelength (512 nm) are both in the visible range. The fluorescence quantum yields of the B1 and Hg2+-bound states of BHg1 are 0.008 and 0.58 in 70% aqueous ethanol solution, respectively. The pKa of 1.97 is the lowest in metal ions PET chemo sensors reported up till now as we know. Thus, B1 can detect the Hg2+ in a wide pH span, which indicates that it has more potential and further practical applications for biology and toxicology. Furthermore, BHg1 also displays response to some anions such as Cl(Br), , SCN and CH3COO, which is attributed to the significant coordinating ability of these anions to Hg2+.  相似文献   

15.
A novel probe, 3′,6′ - bis(diethylamino) -2- ((2,4-dimethoxybenzylidene)amino) spiro [isoindoline-1,9′-xanthene]-3-thione (RBS), was designed and synthesized. Its structure was characterized with elemental analysis, IR spectra and 1H NMR. The probe displayed highly selective and sensitive recognition of Hg2+. Reacting with mercury ions in aqueous solution, its fluorescence intensity was enhanced significantly, while its color was changed from colorless to pink. So, a new fluorescence method of detection of Hg2+ was proposed. Its dynamic response concentration range and detection limit for Hg2+ were 5.00?×?10?9 M to 1.00?×?10?6 M detected and 1.83?×?10?9 M, respectively. Satisfying results were obtained when the probe was applied to detect spiked Hg2+ in samples.  相似文献   

16.
A nanosensor, based on 8-hydroxyquinoline functionalized graphene oxide, was developed for the fluorescence detection of Zn2+. It showed high selectivity and sensitivity for Zn2+ion in aqueous solution over other metal ions such as Li+, Na+, Ca2+, Mg2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Ni2+, Pb2+, Fe2+, Fe3+and Cr3+. Due to the linearity of the emission intensity toward Zn2+ concentration, fluorescent technique could be used for the detection of Zn2+ ion even at very low concentrations.  相似文献   

17.
In the present study, we used the previously developed fluorescence probe, EPNP, to generate the first image of the distribution of mercuric ion in primary mouse neuron cultures. At postnatal day 1 (P1), the mice were intraperitoneally (IP) injected with mercuric chloride in doses ranging from 0.05 to 0.6 μg/g body weight. After 1, 2, 3, and 4 days exposure, primary nervous cell cultures and frozen brain and spinal tissue sections were prepared and dyed using EPNP. On the third day of repeated injections, Hg2+ was visualized in primary cerebral neuron cultures as an increase of Hg2+-induced fluorescence at the doses?≥?0.1 μg/g. A similar accumulation of Hg2+ was observed in frozen hippocampus tissue sections. In contrast, no Hg2+ was observed in spinal cord neurons and spinal tissue sections. The detection of a low dose of IP injected mercury in mouse cerebral neurons facilitated the evaluation of the exposure risk to low-dose Hg2+ in immature organisms. Moreover, the highly sensitive EPNP revealed Hg2+ in the cerebral neurons of mice younger than P4, while the presence of Hg2+ was not detected until?≥?P11 in previous reports. Thus, this technology and the results obtained herein are of interest for neurotoxicology.  相似文献   

18.
A chemosensor, 2,2′-(1,4-phenylenedivinylene)bis-8-acetoxyquinoline (1), its fluorescent sensing behavior toward representative alkali ions (Na+, K+), alkaline earth ions (Mg2+, Ca2+), and transition-metal ions (Ni2+, Cu2+, Zn2+, Hg2+, Pb2+, Cd2+) was intensively investigated. The compound (1) exhibited pronounced Hg2+ selective on–off-type fluoroionophoric properties among the representative ions in DMF/ethanol (1:9, v/v) solution. Moreover, the highly Hg2+-selective fluorescence quenching property in conjunction with a visible colorimetric change from colorless to light yellow can be observed, leading to potential fabrication of both “naked-eye” and fluorescent detection of Hg2+.  相似文献   

19.
The condensation product of phenylalanine and salicylaldehyde (L) was synthesised and characterised which was found to be selective fluorescent “off-on” sensor for Zn2+ ion with the detection limit 10?5 M. The sensor is free of interferences from metal ions - Na+, K+, Al3+, Mn2+, Co2+, Ni2+, Cu2+, Pb2+, Cd2+ and Hg2+. The Fluorescence and the UV/visible spectral data reveals a 1:1 interaction between the sensor and Zn2+ ion with binding constant 108. The DFT and TDDFT calculations confirm the structures of the sensor and the sensor-Zn2+ complex.  相似文献   

20.
The sensitization of the excited triplet state of a novel symmetrical Bis(dialkylamino)phenoxazinium salt was developed in the presence of Hg2+. This effect was used to determine the concentration of Hg2+ in different water samples. The phenoxazinium salt sensor was characterized by different spectroscopic tools such as: UV, FTIR, NMR and fluorescence spectra. The sensor has an emission band at 347 nm in DMSO. Hg2+ in DMSO at pH 5.6 can remarkably quench the fluorescence intensity of the sensor at 347 nm and a new band was appeared at 436 nm due to the strong complex formation between Hg2+ and sensor. The quenching of the band intensity at 347 and the enhancement of the intensity of the new band at 436 were used to determine the Hg2+ in different waste water samples. The dynamic range found for the determination of Hg2+ concentration is 8.7?×?10-10 – 1.4?×?10-6 mol L?1 with a detection limit of 5.8?×?10?10 mol L?1 and quantification detection limit of 1.8?×?10-9 mol L-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号