首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
YVO4:Eu3+,Bi3+ phosphors have been prepared by the high-temperature solid-state (HT) method and the Pechini-type sol-gel (SG) method. Spherical SiO2 particles have been further coated with YVO4:Eu3+,Bi3+ phosphor layers by the Pechini-type SG process, and it leads to the formation of core-shell structured SiO2/YVO4:Eu3+,Bi3+ phosphors. Therefore, the phase formations, structures, morphologies, and photoluminescence properties of the three types of as-prepared YVO4:Eu3+,Bi3+ phosphors were studied in detail. The average diameters for the phosphor particles are 2-4 μm for HT method, 0.1-0.4 μm for SG method, and 0.5 μm for core-shell structured SiO2/YVO4:Eu3+,Bi3+ particles, respectively. Photoluminescence spectra show that effective energy transfer takes place between Bi3+ and Eu3+ ions in each type of as-prepared YVO4:Eu3+,Bi3+ phosphors. Introduction of Bi3+ into YVO4:Eu3+ leads to the shift of excitation band to the long-wavelength region, thus the emission intensities of 5D0-7F2 electric dipole transition of Eu3+ at 615 nm upon 365 nm excitation increases sharply, which makes this phosphor a suitable red-emitting materials that can be pumped with near-UV light emitting diodes (LEDs).  相似文献   

2.
We have studied the photoluminescence (PL) of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors and the correlation of the PL of those phosphor with their crystal structure. It is found that (Y, Gd)VO4:Eu3+ phosphors have the same crystal structure as YVO4:Eu3+, which is tetragonal with a little different lattice parameters. In the case of (Y, La)VO4:Eu3+ phosphors, however, the gradual change from tetragonal to monoclinic structure of host lattice was observed as the amount of La ion increased. To investigate the PL property of (Y, Ln)VO4:Eu3+ (Ln=La and Gd) phosphors, vacuum ultraviolet (VUV) and ultraviolet (UV) excitation were used. The favorable crystal structure for the PL intensity of orthovanadate phosphor under 147 and 254 nm excitation was tetragonal containing Gd ion and under 365 nm excitation was monoclinic containing La ion which might have the lowest site symmetry for Eu3+ ion.  相似文献   

3.
Highly emissive Eu3+:YVO4 nanocrystals were successfully prepared by the hydrothermal method. The average diameter of grains was determined to be 15 nm. Transparent polymer nanocomposites composed of PMMA and well dispersed Eu3+:YVO4 nanocrystals were fabricated by in situ polymerization. The nanocrystalline powders and nanocomposites were characterized by scanning and transmission electron microscopy (TEM) and X-ray diffraction (XRD). The luminescence properties of the obtained nanocomposites were investigated and compared with the starting powders and Eu3+:YVO4 single crystal. The effect of the polymeric host on the luminescence properties of Eu3+:YVO4 is presented and discussed.  相似文献   

4.
纳米棒状GdPO4:Eu3+荧光粉的合成及其发光性能的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用溶解热法合成出了纳米棒状GdPO4:Eu3+荧光粉,其中不同磷源和pH值对最终产物的形成起着关键的作用. 将纳米棒状和块体GdPO4:Eu3+荧光粉的发光性能进行了对比,其中与块体GdPO4:Eu3+荧光粉相比,纳米棒状GdPO4:Eu3+荧光粉的色纯度得到了改善,而在激发光谱中,纳米棒状GdPO4:Eu< 关键词: 纳米棒 磷酸钆 发光性能  相似文献   

5.
Gd-substituted Y1-xGdxVO4:Eu3+ luminescent thin films have been grown on Al2O3(0001) substrates using pulsed-laser deposition. The films grown under different deposition conditions have been characterized using microstructural and luminescent measurements. The crystallinity, surface morphology, and photoluminescence (PL) of the films are highly dependent on the amount of Gd. The photoluminescence (PL) brightness data obtained from Y1-xGdxVO4:Eu3+ films grown under optimized conditions have indicated that the PL brightness is more dependent on the surface roughness than the crystallinity of the films. In particular, the incorporation of Gd into the YVO4 lattice could induce a remarkable increase of PL. The highest emission intensity was observed with Y0.57Gd0.40Eu0.03VO4 thin film whose brightness was increased by a factor of 2.5 and 1.9 in comparison with that of YVO4:Eu3+ and GdVO4:Eu3+ films, respectively. This phosphor have application to flat panel displays. PACS 78.20.-e; 78.55.-m; 78.66.-w  相似文献   

6.
A new orange–red Ba3P4O13:Eu3+ phosphor has been synthesized by solid-state technique, and its photoluminescence properties were investigated. X-ray powder diffraction (XRD) analysis indicates that doping Eu3+ does not change the lattice of Ba3P4O13. Field-emission scanning electron microscope (FE-SEM) images illustrate that microstructure of the phosphor consists of oval grains with average diameter of 1 μm and heavy agglomerate phenomenon. The excitation spectra indicate the phosphor can be effectively excited by near ultraviolet (NUV) light, making it attractive as conversion phosphor for LED applications. The phosphor exhibits a bright orange–red emission excited by 394 nm light. The CIE chromaticity can be varied slightly by adjusting the content of Eu3+, which is attributed to the different lattice sites occupied by Eu3+ in Ba3P4O13 host. The photoluminescence studies indicate that Ba3P4O13:Eu3+ is a potential orange–red phosphor for near-ultraviolet InGaN-based white light-emitting diodes (WLEDs).  相似文献   

7.
A series of different concentrations of Eu3+ and Dy3+ ions co-doping yttrium vanadate phosphors coated with Fe3O4 (YVO4:Eu3+, Dy3+@Fe3O4) was successful prepared by using two steps route including sol?Cgel method and hydrothermal method. The resulting phase formation, particle morphology, structure, luminescent, and magnetic properties were examined by X-ray diffraction, transmission electron microscopy, photoluminescence spectra, and vibrating sample magnetometer. The results indicate that the diameter of the YVO4:Eu3+, Dy3+@Fe3O4 nanocomposites is 100?C300?nm. The special saturation magnetization Ms of the nanocomposites is 53?emu/g. Additionally, the emission intensities of YVO4:Eu3+ or Dy3+ ions are regularly changed with the emission doping concentrations. After coating with Fe3O4, the variation of the luminescent intensity of YVO4:Eu3+, Dy3+@Fe3O4 magnetic phosphors is different.  相似文献   

8.
A green-emitting phosphor of hexagonal BaZnSiO4:Eu2+ was prepared by a combustion-assisted synthesis method and an efficient green emission from ultraviolet to visible light was observed. The luminescence and crystallinity were investigated by using luminescence spectrometry and X-ray diffractometry. In the hexagonal structure of BaZnSiO4:Eu2+ phosphor, Eu2+ ions occupy three different lattice sites by substitution for Ba2+ ions. Eu2+ ions on Ba (1) and Ba (2) sites gave emissions at about 505 nm while Eu2+ ions on Ba (3) sites showed an emission band at 403 nm. The excitation spectrum is a broad band extending from 260 to 465 nm, which matches the emission of ultraviolet light-emitting diodes. The critical quenching concentration of Eu2+ in BaZnSiO4:Eu2+ phosphor is about 0.05 mol. The value of the critical transfer distance is calculated as 10.97 Å. The corresponding concentration quenching mechanism is verified to be the electric multipole–multipole interaction. The CIE coordinates of the optimized sample $\mathrm{Ba}_{0.95}\mathrm{ZnSiO}_{4}{:}\mathrm{Eu}_{0.05}^{2+}$ were calculated as (x,y)=(0.172,0.463).  相似文献   

9.
Eu3+-doped LiGd(MoO4)2 red phosphor was synthesized by solid-state reaction, and its photoluminescent properties were measured. The effect of Eu3+ doping concentration on PL intensity was investigated, and the optimum concentration of Eu3+ doped in LiGd(MoO4)2 was found to be 30 mol%. Compared with Y2O2S:0.05Eu3+, Na0.5Gd0.5MoO4:Eu3+ and KGd(MoO4)2:Eu3+, the LiGd(MoO4)2:Eu3+ phosphor showed a stronger excitation band around 395 nm and a higher intensity red emission of Eu3+ under 395 nm light excitation. For the first time, intensive red light-emitting diodes (LEDs) were fabricated by combining phosphor and a 395 nm InGaN chip, confirming that the LiGd(MoO4)2:Eu3+ phosphor is a good candidate for LED applications.  相似文献   

10.
Using inorganic oxides and salts instead of alkoxides as the main starting materials, we prepared nanocrystalline YVxP1-xO4:Eu3+ and RVO4:Eu3+ (0x1; R=Y,La,Gd) thin-film phosphors by the Pechini sol–gel dip-coating process. The resulting films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), and photoluminescence excitation and emission spectra as well as luminescence decay. The results of XRD showed that a solid solution formed in the YVxP1-xO4:Eu3+ film series from x=0 to x=1 with zircon structure. The same structure also held for the GdVO4:Eu3+ film, but the LaVO4:Eu3+ film crystallized with a different structure, monazite. AFM and SEM studies revealed that the phosphor films consisted of spherical particles ranging from 90 to 400 nm depending on the film compositions. With the increase of x values in YVxP1-xO4:Eu3+ films, the integrated emission intensity and the red (5D07F2)-to-orange (5D07F1) intensity ratio of Eu3+ increase due to the increased energy-transfer probability from VO43- to Eu3+ and the increased polarizability of the surrounding oxygen ions, respectively. The x values also have an influence on the decay behavior of Eu3+. The YVO4:Eu3+ and GdVO4:Eu3+ films showed very similar luminescence properties due to their same crystal structures. However, the LaVO4:Eu3+ film exhibited a much different emission property from those of the YVO4:Eu3+ and GdVO4:Eu3+ films due to the structural effects. PACS 73.63.Bd; 78.55.Hx; 78.66.Nk; 81.15.Lm; 81.20.Fw  相似文献   

11.
YVO4:Eu, and YVO4:Eu/SiO2 nanocrystals (NCs) were prepared by hydrothermal method with citrate as capping ligands. Their morphologies, structures, components, and photoluminescence properties were investigated and presented in this paper. A remarkable fluorescence enhancement up to 2.17 times was observed in colloidal YVO4:Eu/SiO2 NCs, compared to that of colloidal YVO4:Eu NCs. This is mainly attributed to the formation of the outer protecting layers of biocompatible SiO2 shells; which shield the Eu3+ ions effectively from water and thus reduces the deleterious effects of water on the luminescence. Meanwhile, on the basis of laser selective excitation, two kinds of luminescent centers were confirmed in the NCs, namely, inner Eu3+ ions and surface Eu3+ ions. The surface modifications for YVO4:Eu NCs effectively reduced the surface defects and accordingly enhanced the luminescence. The core/shell NCs exhibited long fluorescence lifetime and high photostability under ultraviolet radiation.  相似文献   

12.
An Eu2+-activated oxynitride LiSr(4?y)B3O(9?3x/2)Nx:yEu2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr4B3O(9?3x/2)Nx:Eu2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f65d1→4f7 transition of Eu2+. The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr3.99B3O8.25N0.5:0.01Eu2+ phosphors, respectively. Concentration quenching of Eu2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu2+-site emission centers in the LiSr4B3O9 host. These results indicate LiSr4B3O(9?3x/2)Nx:Eu2+ phosphor is promising for application in white near-UV LEDs.  相似文献   

13.
A red-emitting phosphor of Eu3+-doped calcium–tellurium–zinc oxide, Ca3Te2(ZnO4)3, with a garnet-type structure was synthesized by high temperature solid-state reactions. This phosphor exhibited a strong red emission. The photoluminescence excitation spectrum showed that Ca3Te2(ZnO4)3:Eu3+ can be effectively excited by UV–visible light. The property of long-wavelength excitation for this material has a benefit as a red phosphor in application of white light-emitting diodes. The colour coordinates were calculated. The excitation and emission spectra and luminescence decay curves were obtained using a pulsed, tunable, narrowband dye laser. Crystallographic sites and charge compensation mechanism of Eu3+ ions were discussed. The emission line from Eu3+ in intrinsic crystallographic site in the lattice was located at 579.56 nm. The emission line from Eu3+ in another disturbed site, which is created by the defects created by the charge-compensation, was located at 580.88 nm. The disordered crystallographic sites of Eu3+ are benefit for their strong red luminescence corresponding to the 5D07F2 transition.  相似文献   

14.
YVO4: Bi3+, Eu3+nanophosphors are prepared by the citrate-assisted low-temperature wet chemical synthesis. When the colloidal solution is aged at 60 °C, the crystalline YVO4: Bi3+, Eu3+ nanorods are formed from the amorphous gel precursors, as confirmed by transmission electron microscopy and X-ray diffractometry (XRD). YVO4: Bi3+, Eu3+ nanophosphors emit red through energy transfer from Bi3+ to Eu3+ under near-UV-light excitation. The emission intensity increases with increasing the fraction of the crystalline phase during aging. The excitation peak corresponding to Bi3+-V5+ charge transfer relative to those of O2−-V5+ and O2−-Eu3+ charge transfers gradually becomes strong until the completion of the crystallization, although the contents of individual Bi3+ and Eu3+ ions incorporated into YVO4 keep constant. When the aging is continued after the completion of the crystallization, the content of incorporated Bi3+ gradually increases, and hence the emission intensity decreases as a result of the energy migration among Bi3+ ions. These results suggest that in addition to the fraction of the crystalline phase and the contents of incorporated Bi3+ and Eu3+ ions, the local chemical states around Bi3+ play significant roles in photoluminescence properties.  相似文献   

15.
In this Letter, 7F2 crystal field (CF) levels of surface Eu3+ in YVO4 nanocrystals are calculated employing a refined electrostatic point charge model, where surface states are simulated by point charges. Based on the theoretical 7F2 CF levels, emission spectra of YVO4: Eu3+ nanocrystals are assigned to Eu3+ under different local environments. and relaxation of selection rules by surface effect is discussed.  相似文献   

16.
Spectral properties and emission efficiencies of GdVO4 phosphors   总被引:2,自引:0,他引:2  
GdVO4 with activators Eu, Dy, Sm and Bi has been synthesised by a solid-state reaction. GdVO4:Eu3+ (3%) yielded the highest quantum efficiency of 95%. Interesting energy-transfer properties have been revealed in the mixed-activator phosphor (GdVO4:Eu3+, Sm3+) when excited in the 4f shell of Sm3+ at 408 nm. Bismuth-activated GdVO4 gives rise to a broad-band emission peaking at 525 nm in comparison to YVO4:Bi3+, which gives an emission peak at 570 nm under UV excitation. The quantum efficiency of GdVO4:Bi3+ increases gradually with bismuth concentration and reaches a maximum of 80% for a bismuth concentration of ≈0.5%. There is a shift in the excitation band of GdVO4:Bi3+ towards longer wavelengths with increasing concentration of bismuth, which can lead to energy transfer from bismuth to europium in a phosphor with both these activators. Heat treatment of GdVO4:Bi3+ at 1500 °C for 3–3.5 h resulted in a large percentage of bismuth being lost from the lattice as evaluated by X-ray fluorescence. However, if a large percentage of bismuth (of the order of 3% or more) is initially added, a sufficient quantity of bismuth can still be retained after heat treatment, which can lead to the development of ceramic scintillators for X-ray tomographic applications. Addition of 3–5% boron gives a white GdVO4 phosphor without any chemical treatment. Received: 27 Feruary 2001 / Accepted: 1 August 2001 / Published online: 30 October 2001  相似文献   

17.
Eu-doped Y2O3 particles with spherical shape and fine size were prepared by spray pyrolysis. The cathodoluminescence of Y2O3:Eu3+ powder was optimized by substituting small amount of zinc atoms in place of yttrium sites. As a result, the optimized (Y, Zn)2O3:Eu3+ phosphor showed 60% improved cathodoluminescence compared with Y2O3:Eu3+ particles. The prepared (Y, Zn)2O3:Eu3+ phosphor had spherical shape and 0.726 μm in mean size. Using these particles, the thickness of the phosphor film was controlled by varying the phosphor loading. The brightness and luminous efficiency of phosphor films prepared were monitored with varying the accelerating voltage ranges from 4 to 14 kV. The dependency of the luminous efficiency on the accelerating voltage was very sensitive to the phosphor loading. As increasing the accelerating voltage from 4 to 14 kV, the brightness of phosphor films prepared was monotonically increased from 200 to 1085 cd/cm2, but the saturation in the luminous efficiency appeared at 10 kV. The highest efficiency was achieved when the number of phosphor-particles layer was about 3. More details about the luminous efficiency and brightness were discussed with changing the phosphor loading.  相似文献   

18.
Novel blue/green NaSrPO4 phosphors co-doped with Eu2+ and Tb3+ were synthesized by a conventional solid-state reaction. Their luminescent properties were characterized by using powder X-ray diffraction, photoluminescence excitation and emission spectra, lifetime, and temperature dependent emission spectra, respectively. The NaSrPO4:Eu2+,Tb3+,Na+ phosphor showed an intense broad excitation band between 250 and 430 nm, which was in agreement with the near-UV chip (350–420 nm), and it exhibited two dominating emission bands at 445 and 545 nm, corresponding to the allowed 4f65d1→4f7(8S7/2) transition of Eu2+ ion and the 5D47F5 transition of Tb3+ ion, respectively. The emission intensity and lifetime of Eu2+ ion decreased with the increasing concentration of Tb3+ ion, which strongly indicated that an effective energy transfer occurred from Eu2+ to Tb3+ in NaSrPO4 host. The principle of the energy transfer should be the combined effect of the non-radiative resonant energy transfer and the phonon-assisted non-radiative process.  相似文献   

19.
A blue-emitting phosphor, Eu2+-activated Mg3Ca3(PO4)4 phosphor was synthesized by conventional solid-state reaction. X-ray powder diffraction (XRD) analysis confirmed the phase formation. Photoluminescence (PL) results showed that Mg3Ca3(PO4)4: Eu2+ could be efficiently excited by UV–visible light from 250 to 430 nm, which matched well with the emission wavelengths of near-UV and UV LED chips. The effects of the doped-Eu2+ concentration in Mg3Ca3(PO4)4: Eu2+ on the PL were also investigated. The result reveals that Mg3Ca3(PO4)4: Eu2+ is a potential blue-emitting phosphor for white LEDs.  相似文献   

20.
In this paper, YVO4: 1%Eu3+ phosphor was synthesized via solid state method at 1100 °C. Then TEOS was used as the source of silica, to coat the phosphors, using sol–gel approach. HRTEM analysis confirmed the formation of adhered and smooth coating layer with the thickness of 40–50 nm. From the experiments and characterizations, we found that although the amounts of added SiO2 to the phosphors were not remarkable, but it resulted in enhancement of photoluminescence properties. Interestingly, under the excitation wavelength of 310 nm, the efficiency of the phosphors increased by about 20%. Also, a considerable effect of coating layer on decrease in surface oxygen vacancies was studied using ESR technique. Finally it was found that SiO2 coating of YVO4:Eu3+ phosphors, improves both chemical stability and thermal quenching, effectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号