首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Magnesium aluminate (MgAl2O4) doped with trivalent chromium (Cr3+) was synthesized by the combustion method. The prepared sample was characterized by X-ray powder diffraction, Brunauer-Emmet-Teller (BET) adsorption isotherms and diffuse-reflectance UV-vis spectroscopy techniques. Electron paramagnetic resonance (EPR) and photoluminescence (PL) studies have been performed at room temperature and at 110 K. The EPR spectrum exhibit resonance signals at g=5.37, 4.53, 3.82, 2.26 and 1.96 characteristic of Cr3+ ions. The luminescence of Cr3+-activated MgAl2O4 exhibits a red emission peak around 686 nm from the synthesized phosphor particles upon 551 nm excitation. The luminescence is assigned to a transition from the upper 2Eg4A2g ground state of Cr3+ ions. By correlating EPR and optical data the crystal field splitting parameter (Dq), Racah inter-electronic repulsion parameter (B) and the bonding parameters have been evaluated and discussed. The bonding parameters suggests that the ionic nature of Cr3+ ions with the ligands and the Cr3+ ions are in distorted octrahedral environment.  相似文献   

2.
We describe a compact, broadly tunable, continuous-wave (cw) Cr2+:ZnSe laser pumped by a thulium fiber laser at 1800 nm. In the experiments, a polycrystalline ZnSe sample with a chromium concentration of 9.5 × 1018 cm−3 was used. Free-running laser output was around 2500 nm. Output couplers with transmissions of 3%, 6%, and 15% were used to characterize the power performance of the laser. Best power performance was obtained with a 15% transmitting output coupler. In this case, as high as 640 mW of output power was obtained with 2.5 W of pump power at a wavelength of 2480 nm. The stimulated emission cross-section values determined from laser threshold data and emission measurements were in good agreement. Finally, broad, continuous tuning of the laser was demonstrated between 2240 and 2900 nm by using an intracavity Brewster cut MgF2 prism and a single set of optics.  相似文献   

3.
Undoped ZnO and Zn0.9Cr0.1O films were prepared on Al2O3 (0 0 0 1) substrates using the magnetron co-sputtering technique. X-ray diffraction scans show that all films exhibit nearly single-phase wurtzite structure with c-axis orientation. Both chromium doping and growth ambient have a significant impact on the lattice constants and nucleation processes in ZnO film. A large quantity of subgrains (10 nm in size) has been observed on Zn0.9Cr0.1O film grown under Ar + O2, while irregular plateau-like grains 40-50 nm in size were observed on Zn0.9Cr0.1O film grown under Ar + N2. The ultraviolet-visible transmittance and optical bandgap of all films were also examined. The photoluminescence spectra of all films exhibit a broad emission located around 400 nm, which is composed of one weak ultraviolet luminescence and another rather intense near-violet one, as determined by Gaussian peak fitting. The near-violet emission centered on 400 nm might originate from the electron transition between the band tail state levels of surface defects and/or lattice imperfection in the ZnO film.  相似文献   

4.
SrAl2O4:Eu2+, Dy3+ thin films were grown on Si (1 0 0) substrates in different atmospheres using the pulsed laser deposition (PLD) technique. The effects of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological and photoluminescence (PL) properties of the films were investigated. The films were ablated using a 248 nm KrF excimer laser. Improved PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres compared to those prepared in vacuum. A stable green emission peak at 520 nm, attributed to 4f65d1→4f7 Eu2+ transitions was obtained. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The diffusion of adventitious C into the nanostructured layers deposited in the Ar and O2 atmospheres was most probably responsible for the quenching of the PL intensity after annealing.  相似文献   

5.
SrAl2O4:Eu2+,Dy3+ thin films were grown on Si (1 0 0) substrates using the pulsed laser deposition (PLD) technique to investigate the effect of vacuum, oxygen (O2) and argon (Ar) deposition atmospheres on the structural, morphological, photoluminescence (PL) and cathodoluminescence (CL) properties of the films. The films were ablated using a 248 nm KrF excimer laser. Atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS) and fluorescence spectrophotometry were used to characterize the thin films. Auger electron spectroscopy (AES) combined with CL spectroscopy were employed for the surface characterization and electron-beam induced degradation of the films. Better PL intensities were obtained from the unannealed films prepared in Ar and O2 atmospheres with respect to those prepared in vacuum. A stable green emission peak at 515 nm, attributed to 4f65d1→4f7 Eu2+ transitions were obtained with less intense peaks at 619 nm, which were attributed to transitions in Eu3+. After annealing the films prepared in vacuum at 800 °C for 2 h, the intensity of the green emission (520 nm) of the thin film increased considerably. The amorphous thin film was crystalline after the annealing process. The CL intensity increased under prolonged electron bombardment during the removal of C due to electron stimulated surface chemical reactions (ESSCRs) on the surface of the SrAl2O4:Eu2+, Dy3+ thin films. The CL stabilized and stayed constant thereafter.  相似文献   

6.
The Mn-, Cr-doped and Mn, Cr-co-doped MgAl2O4 powders have been synthesized via a gel-solid reaction method. Energy transfer from Mn2+ to Cr3+ has been observed for the first time in the co-doped MgAl2O4 phosphors. When excited with blue light with a wavelength of 450 nm at room temperature, both green emission from Mn2+ around 520 nm and red emission from Cr3+ around 675and 693 nm were generated. Moreover, the color of the emission can be modified by controlling the doping concentrations of Mn2+ and Cr3+. Therefore, MgAl2O4: Mn2+, Cr3+ could be used as a single-phased phosphor for white LED with a blue LED chip. The energy transfer in terms of Mn2+ to Cr3+ is determined by means of radiation and reabsorption.  相似文献   

7.
This work investigates the origin of novel visible photoluminescence (PL) bands observed in the spinel MgAl2O4:Co2+. Besides the well-known fourfold-coordinated Co2+(Td) PL at 670 nm [N.V. Kuleshov, V.P. Mikhailov, V.G. Scherbitsky, P.V. Prokoshin and K.V. Yumashev, J. Lumin. 55 (1993) 265.], a rich structured PL band at 686 nm was also observed that we associate with uncontrolled impurities of sixfold coordinated Cr3+(Oh) by time-resolved spectroscopy and lifetime measurements and their variation with temperature. We also show that the lifetime of the Co2+(Td) emission at 670 nm varies from τ=6.7 μs to 780 ns on passing from T=10 to 290 K. This unexpected behaviour for Td systems is related to the excited-state crossover (4T12E), making the emission band to transform from a narrow-like emission from 2E at low temperature to a broad structureless band from 4T1 at room temperature.  相似文献   

8.
In this work we report the optical, morphological and structural characterization and diode application of Cr2O3 nanofilms grown on p-Si substrates by spin coating and annealing process. X-ray diffraction (XRD), non-contact mode atomic force microscopy (NC-AFM), ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy were used for characterization of nanofilms. For Cr2O3 nanofilms, the average particle size determined from XRD and NC-AFM measurements was approximately 70 nm. Structure analyses of nanofilms demonstrate that the single phase Cr2O3 on silicon substrate is of high a crystalline structure with a dominant in hexagonal (1 1 0) orientation. The morphologic analysis of the films indicates that the films formed from hexagonal nanoparticles are with low roughness and uniform. UV-vis absorption measurements indicate that the band gap of the Cr2O3 film is 3.08 eV. The PL measurement shows that the Cr2O3 nanofilm has a strong and narrow ultraviolet emission, which facilitates potential applications in future photoelectric nanodevices. Au/Cr2O3/p-Si metal/interlayer/semiconductor (MIS) diodes were fabricated for investigation of the electronic properties such as current-voltage and capacitance-voltage. Ideality factor and barrier height for Au//Cr2O3/p-Si diode were calculated as 2.15 eV and 0.74 eV, respectively. Also, interfacial state properties of the MIS diode were determined. The interface-state density of the MIS diode was found to vary from 2.90 × 1013 eV−1 cm−2 to 8.45 × 1012 eV−1 cm−2.  相似文献   

9.
The photoluminescence (PL) of Cr-doped ZnSe single crystals is investigated in a temperature interval from 83 up to 297 K and in a wavelengths region from 440 up to 2700 nm. The doping was carried out during a high-temperature annealing of ZnSe crystals in CrSe vapors and in chrome chlorides medium. It is revealed that the doping results in an appearance of both luminescence bands located at 0.54, 0.97, and 2.15 μm and edge luminescence bands located at 454, 457, and 460 nm at 83 K. It is shown that the PL bands located at 457 and 460 nm are caused by the radiative recombination with the participation of holes located on hydrogen-like orbits close to Cr+ centers, having a binding energy of 99 meV. The excitons bound with centers responsible for the radiation located at 0.54 μm and having a binding energy of 65-68 meV are considered. The energy of a lattice relaxation at recharge of centers responsible for green radiation is estimated and equals 40-170 meV.  相似文献   

10.
Uniform and crack free polycrystalline lutetium oxide (Lu2O3:(Eu,Pr)) films were fabricated by Pechini sol-gel method combined with the spin-coating technique. X-ray diffraction (XRD) and atomic force microscope (AFM) characterizations indicated that the obtained film was composed of polycrystalline cubic Lu2O3 phase with an average grain size around 30 nm. The photoluminescence(PL) spectra and decay performances of the Lu2O3:5 mol% Eu films co-doped by 0-0.5 mol% Pr3+ with different concentrations were characterized. It was found that the afterglow was reduced obviously due to the introduction of 0-0.5 mol% Pr3+ in the Lu2O3:5 mol% Eu films coupled by decrease in the emission intensity at 612 nm. The mechanism of afterglow diminishing was discussed based on the thermoluminescence measurements.  相似文献   

11.
We demonstrate passive Q-switching of short-length double-clad Tm3+-doped silica fiber lasers near 2 μm pumped by a laser diode array (LDA) at 790 nm. Polycrystalline Cr2+:ZnSe microchips with thickness from 0.3 to 1 mm are adopted as the Q-switching elements. Pulse duration of 120 ns, pulse energy over 14 μJ and repetition rate of 53 kHz are obtained from a 5-cm long fiber laser. As high as 530 kHz repetition rate is achieved from a 50-cm long fiber laser at ∼10-W pump power. The performance of the Q-switched fiber lasers as a function of fiber length is also analyzed.  相似文献   

12.
The microhardness of single-crystal samples of ZnSe: Cr2+ with a chromium concentration in the range from 3.3 × 1017 to 4.0 × 1019 cm?3 has been studied. The microhardness as a function of the load on the indenter on the faces (111), (1 $\bar 1$ 0), and (001) of the ZnSe: Cr2+ and ZnSe samples has been measured. It has been established that doping of zinc selenide with chromium leads to a decrease in the anisotropy of the mechanical properties and stabilization of the cubic sphalerite structure.  相似文献   

13.
Electron spin resonance spectra of chromia-yttria solid solutions have been studied at room temperature for Cr concentrations between 0.20 and 2.00 mol%. Isolated Cr3+ ions in sites with two different symmetries were observed, as well as well as Cr3+ ions coupled by the exchange interaction. The relative concentration of isolated to coupled Cr3+ ions decreases with increasing chromium concentration. The results are consistent with the assumption that the chromium ions occupy preferentially the C2 symmetry sites. A theoretical calculation based on this model yields an effective range of the exchange interaction between Cr3+ ions of 0.64 nm, of the same order as that of Cr3+ ions in MgO.  相似文献   

14.
In this contribution, photoluminescence and time-resolved photoluminescence spectra of Ca(NbO3)2 doped with Pr3+ obtained at high hydrostatic pressure up to 72 kbar applied in a diamond anvil cell are presented. At ambient conditions, the emission spectrum obtained in the time interval 0-1 μs is dominated by spin-allowed transitions from the 3P0 state. On the other hand, transitions from 1D2, characterized by a decay time equal to 30 μs dominate the steady-state luminescence.At pressures lower than 60 kbar, the continuous wave emission spectrum consists of sharp lines peaking between 600 and 625 nm, related to the 1D23H4 transition and three lines at 500, 550 and 650 nm related to emission transitions originating from the 3P0 level of Pr3+. The emission from the 1D2 excited state depends weakly on the pressure. Its decay time decreases from 33 μs at ambient pressure to less than 22 μs at 68 kbar. On the other hand, the 3P0 emission is strongly pressure dependent. At pressures of 60 kbar and higher, the Pr3+ emission intensity from the 3P0 state decreases. This is accompanied by a strong shortening of the luminescence decay time.The observed pressure quenching of the f-f emission transitions and the concomitant lifetime shortening have been attributed to increasing crossover from the 3P0 state of Pr3+ to a Pr3+-trapped exciton state.  相似文献   

15.
Near-infrared (NIR) persistent luminescent β-Ga2O3:Cr3+ nanowire assemblies were synthesized by a hydrothermal process followed by calcination. The phosphor exhibits more than 4 h afterglow in the wavelength range of 650-850 nm after ceasing the ultraviolet light (280-360 nm) irradiation. The trap structure and persistent luminescence mechanism were revealed by thermoluminescence measurement. The β-Ga2O3:Cr3+ nanowire assemblies may find applications as identification taggants in security and optical probes in bio-imaging.  相似文献   

16.
Nanocrystalline powders with various Eu3+ concentration (from 1 to 10 mol %) doped La2O3 were prepared via a combustion route. Their structure and morphology were characterized using X-ray diffraction (XRD) and High-resolution transmission electron microscopy. The emission spectra of the as-synthesized samples show that the strongest emission position is centered at 626 nm corresponding to 5D07F2 transition of Eu3+ ions and the intensity change of 626 nm emission is considered as a function of ultraviolet (240 nm) irradiation time. The excitation spectra at 626 nm monitoring indicate that the charge transfer state band is varies with different Eu3+ ion concentration. These results are attributed to the surface defects of the nanocrystals.  相似文献   

17.
Cysteine stabilized ZnS and Mn2+-doped ZnS nanoparticles were synthesized by a wet chemical route. Using the ZnS:Mn2+ nanoparticles as seeds, silica-coated ZnS (ZnS@Si) and ZnS:Mn2+ (ZnS:Mn2+@Si) nanocomposites were formed in water by hydrolysis and condensation of tetramethoxyorthosilicate (TMOS). The influence of annealing in air, formier gas, and argon at 200-1000 °C on the chemical stability of ZnS@Si and ZnS:Mn2+@Si nanoparticles with and without silica shell was examined. Silica-coated nanoparticles showed an improved thermal stability over uncoated particles, which underwent a thermal combustion at 400 °C. The emission of the ZnS@Si and ZnS:Mn2+@Si passed through a minimum in photoluminescence intensity when annealed at 600 °C. Upon annealing at higher temperatures, ZnS@Si conserved the typical emission centered at 450 nm (blue). ZnS:Mn2+@Si yielded different high intensity emissions when heated to 800 °C depending on the gas employed. Emissions due to the Mn2+ at 530 nm (green; Zn2SiO4:Mn2+), 580 nm (orange; ZnS:Mn2+@Si), and 630 nm (red; ZnS:Mn2+@Si) were obtained. Therefore, with a single starting product a set of different colors was produced by adjusting the atmosphere wherein the powder is heated.  相似文献   

18.
The phosphor, BaMgAl10O17:Eu2+, showing a blue emission band at about 450 nm was prepared by a normal solid-state reaction using BaCO3, Al2O3, MgO and Eu2O3 as starting materials with AlF3 as a flux. The study of combined Rietveld refinement and photoluminescence spectra was carried out to determine the structural parameters, such as lattice constants, the valence state of Eu, the site preference of Mg and site fractions of Mg and Eu. The occupancies of Eu and Mg were 0.022 and 0.526, respectively. The valence state of Eu was the divalent state because there was only one broad line at about 450 nm in the photoluminescence spectrum. The site preference of Mg atoms was the tetrahedral site of Al atoms surrounded by oxygen atoms in the spinel block. Lattice parameters decreased due to the difference of two ionic radii, Eu2+(1.09 Å) and Ba2+(1.34 Å), compared with those of BaMgAl10O17.  相似文献   

19.
The optimization of erbium-doped Ta2O5 thin film waveguides deposited by magnetron sputtering onto thermally oxidized silicon wafer is described. Optical constants of the film were determined by ellipsometry. For the slab waveguides, background losses below 0.4 dB/cm at 633 nm have been obtained before post-annealing. The samples, when pumped at 980 nm yielded a broad photoluminescence spectrum (FWHM∼50 nm) centred at 1534 nm, corresponding to 4I13/2-4I15/2 transition of Er3+ ion. The samples were annealed up to 600 °C and both photoluminescence power and fluorescence lifetime increase with post-annealing temperature and a fluorescence lifetime of 2.4 ms was achieved, yielding promising results for compact waveguide amplifiers.  相似文献   

20.
A novel green phosphor, Tb3+ doped Bi2ZnB2O7 was synthesized by conventional solid state reaction method. The phase of synthesized materials was determined using the XRD, DTA/TG and FTIR. The photoluminescence characteristics were investigated using spectrofluorometer at room temperature. Bi2ZnB2O7:Tb3+ phosphors excited by 270 nm and 485 nm wavelengths. The emission spectra were composed of three bands, in which the dominated emission of green luminescence Bi2ZnB2O7:Tb3+ attributed to the transition 5D4 → 7F5 is centered at 546 nm. The dependence of the emission intensity on the Tb3+ concentration for the Bi2−xTbxZnB2O7 (0.01 ≤ x ≤ 0.15) was studied and observed that the optimum concentration of Tb3+ in phosphor was 13 mol% for the highest emission intensity at 546 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号