首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, rapid and sensitive synchronous fluorescence method was developed for the determination of ciprofloxacin (CPFX) in the pharmaceutical formulation and human serum. The results show that when Y3+ is added into the CPFX solution, the characteristic fluorescence of Y3+ is not emitted whereas the fluorescence intensity of CPFX is significantly enhanced. The synchronous fluorescence technology is employed in this method to directly determine trace amount of CPFX in human serum. A linear relationship between the fluorescence intensity and the CPFX concentration is obtained in the range of 1.0×10−9 ∼5.0×10−6 mol L−1. The limit of detection (LOD) of this method attains as low as 2.0×10−10 mol L−1 (S/N=3). The selectivity of this method is also very good. Common metal ions, rare-earth ions and some pharmaceuticals, which are usually used together with CPFX in the clinic, do not interfere with the determination of CPFX under general conditions.  相似文献   

2.
The fluorescence system of enoxacin-Tb3+-sodium dodecylbenzene sulfonate (SDBS) was investigated in this paper. The experiments indicated that the fluorescence intensity of Tb3+-SDBS was greatly enhanced by enoxacin. Accordingly, a sensitive fluorimetric method for determining enoxacin was established. The fluorescence intensity was measured by a 1-cm quartz cell with an excitation wavelength of 290 nm and an emission wavelength of 545 nm. The enhanced fluorescence intensity of the system (ΔF) showed a good linear relationship with the concentration of enoxacin in the range of 5.0×10−9 to 2.0×10−6 mol L−1, its correlation coefficient was 0.9992 and the detection limit (S/N=3) was 2.8×10−9 mol L−1. The presented method was used to determine enoxacin in real pharmaceutical samples. The luminescence mechanism was also discussed in detail. In the fluorescence system of enoxacin-Tb3+-SDBS, SDBS not only acted as the surfactant but also acted as the energy donor.  相似文献   

3.
The characteristics of host-guest complexation between p-sulfonated calix [G. Arena, S. Gentile, F. G. Gulino, D. Sciotto, C. Sgarlata, Tetrahedron Lett. 45 (2004) 7091] arene (SC6A) and cationic surfactant cetyltrimethylammonium bromide (CTAB) were studied by fluorescence spectrometry. A 1:1 stoichiometry for the complexation was established and the complex constant was also calculated by a deduced equation. It was found the fluorescence of the complex could be remarkably quenched by an appropriate amount of ceftriaxone sodium (CTRX). Based on the results, a novel spectrofluorimetric method for determination of CTRX was developed with a linear range of 9.2×10−7-8.5×10−5 mol L−1 and a detection of 3.5×10−7 mol L−1. The proposed method was used to determine CTRX in their commercial preparations with satisfactory results. Moreover, the probable interaction mechanisms of the systems were also discussed.  相似文献   

4.
M. Ghali 《Journal of luminescence》2010,130(7):1254-20848
The author reports on a strong fluorescence quenching of a model transport protein, bovine serum albumin BSA, when bioconjugated with CdS quantum dots QDs. The 4.4 nm size CdS QDs were synthesized using wet chemistry method and were characterized using UV-vis spectroscopy, scanning electron microscopy SEM and X-ray diffraction XRD techniques. It was found that the BSA fluorescence quenching increases linearly with increasing the CdS QDs concentrations in the range of 3×10−7-2.0×10−6 mol L−1. This quenching is explained in terms of Stern-Volmer equation and is ascribed to static quenching with quenching constant 1.321×104 L mol−1 at 300 K.  相似文献   

5.
A new spectrofluorimetric method was developed for the determination of trace amount of nicotinamide adenine dinucleotide phosphate (NADP). Using terbium ion (Tb3+)-ciprofloxacin (CIP) complex as a fluorescent probe, in the buffer solution of pH=9.00, NADP can remarkably enhance the fluorescence intensity of the Tb3+-CIP complex at and the enhanced fluorescence intensity of Tb3+ ion is in proportion to the concentration of NADP. Optimum conditions for the determination of NADP were also investigated. The dynamic range for the determination of NADP is 4.9×10−7−3.7×10−6 mol L−1 with detection limit of 1.3×10−7 mol L−1. This method is simple, practical and relatively free interference from coexisting substances and can be successfully applied to determination of NADP in synthetic water samples. Moreover, the enhancement mechanisms of the fluorescence intensity in the Tb3+-CIP system and the Tb3+-CIP-NADP system have been also discussed.  相似文献   

6.
A novel co-luminescence system based on the formation of a complex between europium (III) (Eu3+) and gatifloxacin (GFLX) in sodium dodecylbenzene sulfonate (SDBS) micelle solution containing lanthanum (III) (La3+) has been developed for the determination of Eu3+. The experimental results show that the complex formed by Eu3+ and GFLX here can emit the characteristic luminescence of Eu3+. With the addition of La3+, the luminescence intensity of the system was enhanced about 7-fold compared with that without La3+. Under the optimal conditions, the luminescence intensity exhibits an excellent linear relationship with Eu3+ concentration in the range of 1.0×10−10-5.0×10−8 mol L−1. The correlation coefficient (r) is 0.9998, and the detection limit (3σ) is 7.0×10−14 mol L−1. A test method with satisfactory accuracy based on this system was applied to determine trace amounts of Eu3+ in rare earth samples. In addition, the detailed luminescence mechanism of this system was investigated by analyzing the ultraviolet absorption spectra, surface tension, fluorescence polarization, quantum yield, and the number of water molecules in the first coordination sphere of the Eu3+ complex.  相似文献   

7.
A novel chemiluminescence (CL) reaction of chlorophenols (CPs), including 2-chlorophenol (2-CP), 4-CP, 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) was reported, which was based on the oxidation of the phototransformed CPs by N-bromosuccinimide (NBS). It was found that the dye-sensitized phototransformation is a prerequisite for the subsequent CL reaction, and the presence of 1.9×10-2 mol L−1 Triton X-100 or 3.7×10-3 mol L−1 CTAB can greatly enhance the CL intensity. A neutral sample solution with the presence of 2×10-5 mol L−1 fluorescein (FL) was found to be optimum for the phototransformation of 2-CP, 4-CP, 2,4-DCP and PCP, but a lower pH of 5.3 was more suitable for 2,4,6-TCP. Based on the CL reaction, detection limits of 8.6×10−8, 1.1×10−7, 1.5×10-7, 4.6×10-8 and 3.0×10−5 mol L−1 were achieved, respectively, for 2-CP, 4-CP, 2,4-DCP, 2,4,6-TCP and PCP with the optimized conditions in the flow system. The mechanism of the phototransformation and the subsequent CL reaction were preliminarily studied and it was suggested that the singlet oxygen formed in the dye-sensitization process was responsible for the conversion of CPs into light-emitting precursors. These intermediate products were suggested to be peroxide compounds after testing by a luminal-based post-column CL detection experiment.  相似文献   

8.
A novel method of luminescence enhancement effect for the determination of balofloxacin (BLFX) was proposed. A new system of the BLFX-Eu3+-SDBS (sodium dodecylbenzene sulfonate) was investigated. It was found that SDBS significantly enhanced the luminescence intensity of the BLFX-Eu3+ complex (about 20-fold). Under the optimized experimental conditions, the system exhibits an excellent linear relationship between the enhanced luminescence intensity and the concentration of BLFX over the range of 1.0×10−8-8.0×10−7 mol L−1 with a correlation coefficient (R) of 0.9994, and the detection limit (3σ) of the method was determined as 2.0×10−9 mol L−1. This method has been successfully applied for the determination of BLFX in pharmaceuticals and human urine/serum samples. Compared with most of the other methods reported, the rapid and simple procedure proposed in the text offers higher sensitivity, wider linear range, and better stability.  相似文献   

9.
In this paper, an amperometric electrochemical biosensor for the detection of hydrogen peroxide (H2O2), based on gold nanoparticles (GNPs)/thionine (Thi)/GNPs/multi-walled carbon nanotubes (MWCNTs)-chitosans (Chits) composite film was developed. MWCNTs-Chits homogeneous composite was first dispersed in acetic acid solution and then the GNPs were in situ synthesized at the composite. The mixture was dripped on the glassy carbon electrode (GCE) and then the Thi was deposited by electropolymerization by Au-S or Au-N covalent bond effect and electrostatic adsorption effect as an electron transfer mediator. Finally, the mixture of GNPs and horseradish peroxidase (HRP) was assembled onto the modified electrode by covalent bond. The electrochemical behavior of the modified electrode was investigated by scanning electron microscope, cyclic voltammetry and chronoamperometry. This study introduces the in situ-synthesized GNPs on the other surface of the modified materials in H2O2 detection. The linear response range of the biosensor to H2O2 concentration was from 5 × 10−7 mol L−1 to 1.5 × 10−3 mol L−1 with a detection limit of 3.75 × 10−8 mol L−1 (based on S/N = 3).  相似文献   

10.
Water-soluble CdSe quantum dots (QDs) were synthesized using mercaptosuccinic acid (MSA) as a stabilizer. The growth process and characterization of CdSe quantum dots were determined by transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Ultraviolet-visible (UV-vis) spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy. Results demonstrated the MSA-capped CdSe QDs were highly crystalline and possessed good optical properties. Further, the resulting products could be used as fluorescent probes to detect Cu2+ ions in physiological buffer solution. The response was linearly proportional to the concentration of Cu2+ ion in the range 2×10−8- 3.5×10−7 mol L−1 with a detection limit of 3.4 nmol L−1.  相似文献   

11.
The microgravimetric and voltammetric responses of a polycrystalline Pt electrode in 0.1 mol L−1 NaOH solution in the presence and the absence of 1.6 × 10−4 Zn2+, at 0.1 V s−1 were analyzed. During the positive potential sweep, the water molecules are progressively substituted by OH ions, prior to PtO formation. The voltammetric charges obtained under the Znads dissolution peaks suggest that 0.7 monolayers are deposited, with each Zn ad-atom occupying one active site and transferring two electrons. The total loss of mass due to the dissolution of the Zn ad-layer was 136.6 ng cm−2 and the mass increase due to PtO formation was found to be only 12 ng cm−2 less than the theoretical ones, 157.5 and 37.4 ng cm−2, respectively, indicating that both processes are overlapped. In this way it is proposed that an adsorbed by-layer of Zn and OH ions is formed.  相似文献   

12.
Titanium dioxide (TiO2) nanoparticles (NPs) are widely used as an important kind of biomaterials. The interaction between TiO2 (P25) at 20 nm in diameter and human serum albumin (HSA) was studied by fluorescence spectroscopy in this work. Under the simulative physiological conditions, fluorescence data revealed the presence of a single class of binding site on HSA and its binding constants (Ka) were 2.18±0.04×104, 0.87±0.05×104, 0.68±0.06×104 M−1 at 298, 304 and 310 K, respectively. In addition, according to the Van’t Hoff equation, the thermodynamic functions standard enthalpy (ΔH0) and standard entropy (ΔS0) for the reaction were calculated to be −75.18±0.15 kJ mol−1 and −170.11±0.38 J mol−1 K−1. These results indicated that TiO2 NPs bond to HSA mainly by van der Waals force and hydrogen bonding formation in low dielectric media, and the electrostatic interactions cannot be excluded. Furthermore, the effects of common ions on the binding constant of TiO2 NPs-HSA complex were discussed.  相似文献   

13.
The effect of tryptophan on the membrane stability was studied by using three artificial biological membranes including liposome, Langmuir monolayer and solid supported bilayer lipid membrane (s-BLM) as models. All the results indicate that the penetration of tryptophan can destabilize different artificial biological membranes. The diameter of liposome and the leakage of calcein from liposome increased with the increase of tryptophan concentration because the penetration of tryptophan was beneficial for dehydrating the polar head groups of lipids and the formation of fusion intermediates. π-A isotherms of lecithin on the subphase of tryptophan solution further confirm that tryptophan can penetrate into lipid monolayer and reduce the stability of lipid monolayer. When the concentration of tryptophan increased from 0 to 2 × 10−3 mol L−1, the limiting molecular area of lecithin increased from 110.5 to 138.5 Å2, but the collapse pressure of the monolayer decreased from 47.6 to 42.3 mN m−1, indicating the destabilization of lipid monolayer caused by the penetration of tryptophan. The resistance spectra of s-BLM demonstrate that the existence of tryptophan leads to the formation of some defects in s-BLM and the destabilization of s-BLM. The values of electron-transfer resistance and double layer capacitance respectively decreased from 5.765 × 106 Ω and 3.573 × 10−8 F to 1.391 × 106 Ω and 3.340 × 10−8 F when the concentration of tryptophan increased from 0 to 2 × 10−3 mol L−1. Correspondingly, the breakdown voltage of s-BLM decreased from 2.51 to 1.72 V.  相似文献   

14.
Dual laser emissions were observed from fluorescein-Na and eosin-B in ethanolic solutions individually in the concentration range from 10−2 to 10−3 mol dm−3 under N2 laser excitation. The first compound was found to lase at two distinct regions with wavelength maxima around 540, 550 nm, while the second one around 558, 574 nm. Steady-state absorption, fluorescence excitation, fluorescence polarization, fluorescence emission and decays of the dyes in various solvents under varying conditions of excitation and detection systems were carried out to identify the nature of the emitting species responsible for laser emissions in two distinct regions. Both the dyes exhibited concentration and excitation wavelength dependence of fluorescence and the effects were found to be more pronounced in binary solution. The fluorescence decays of dyes were monoexponential in ethanol, while in some other solvents used, the decays showed biexponential behavior. The absorption and excitation studies using thin layers of solutions revealed the formation of dimers with the dye concentration around 1×10−3 mol dm−3. Fluorescence polarization and decay studies confirmed the presence of dimers. The two laser bands observed in the shorter and longer wavelengths were respectively ascribed to monomeric and dimeric species.  相似文献   

15.
It is found that the fluorescence intensity of Tb3+-oxolinic acid (OA) complex can be greatly quenched by albumins in sodium dodecyl sulphate (SLS). Under optimum conditions, the quenched fluorescence intensity is in proportion to the concentration of proteins in the range of 5.0×10−8-1.0×10−5 g ml−1 for bovine serum albumin (BSA), 1.0×10−7-1.0×10−5 g ml−1 for human serum albumin (HSA) and 4.0×10−7-1.0×10−5 g ml−1 for egg albumin (EA). Their detection limits (S/N=3) are 2.1×10−8, 2.5×10−8 and 5.0×10−8 g ml−1, respectively. In addition, the interaction mechanism is also investigated.  相似文献   

16.
A rapid flow-injection chemiluminescence (CL) method is proposed for the determination of norfloxacin (NFLX). The method is based on the fact that the weak CL from the redox reaction of Ce(IV)-Na2SO3 can be greatly strengthened by gold nanoparticles (NPs). UV-visible spectra, fluorescence spectra and transmission electron microscopy (TEM) studies are carried out before and after the CL reactions to investigate the CL reinforcing mechanism. The mechanism is supposed to originate from the reinforcer of gold NPs, which facilitates the radical generations and electron-transfer processes taking place on the surface of the gold NPs. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the concentrations of NFLX in the range 7.9×10−7 to 1.9×10−5 M and the detection limit was 8.2×10−8 M. This method is successfully applied to the determination of NFLX in human urine.  相似文献   

17.
It is found that rutin can react with yttrium(III) (Y3+), and emits fluorescence of rutin. The intensity is greatly enhanced by proteins in the presence of sodium lauryl sulfate (SLS). Based on this, a new fluorimetric method of determination of proteins is developed. Under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins in the range of 5.0×10−9-1.0×10−5 g/mL for bovine serum albumin (BSA), 3.0×10−8-1.0×10−5 g/mL for human serum albumin (HSA) and 1.0×10−7-2.0×10−5 g/mL for egg albumin (EA). Their detection limits (S/N=3) are 1.6×10−9, 9.8×10−9 and 2.1×10−8 g/mL, respectively. The interaction mechanism is also studied.  相似文献   

18.
The adsorption of chloridazon (5-amino-4-chloro-2-phenylpyridazin-3(2H)-one) on natural and ammonium kerolite samples from aqueous solution at 10, 25 and 40 °C has been studied by using batch experiments. The experimental data points were fitted to the Langmuir equation in order to calculate the adsorption capacities (Xm) of the samples; two straight lines were obtained, which indicates that the adsorption process takes place in two different stages. Values for Xm1 (first stage) ranged from 1.1 × 10−2 mol kg−1 for natural kerolite at 40 °C up to 5.1 × 10−2 mol kg−1 for ammonium kerolite at 10 °C and the values for Xm2 (second stage) ranged from 9.1 × 10−2 mol kg−1 for natural kerolite at 40 °C up to 14 × 10−2 mol kg−1 for natural kerolite at 10 °C. The adsorption experiments showed on the one hand, that the ammonium kerolite is more effective than natural kerolite to adsorb chloridazon in the range of temperature studied and on the other hand, that the lower temperature, the more effective the adsorption of chloridazon on the adsorbents studied.  相似文献   

19.
A new and complex modification technique of glassy carbon electrode (GCE) with multi-walled carbon nanotubes (MWNTs) was developed. Firstly, MWNTs were electro-deposited on GCE at 1.70 V for 2 h. Secondly, by layer-by-layer (LBL) self-assembly technique, a functional membrane of {PDDA/MWNTs}n were fabricated by alternative immersion in 1% PDDA solution and 1 mg L−1 MWNTs dispersion either. As a result, the modified membrane with five {PDDA/MWNTs} bilayers have good sensitivity, stability, anti-fouling ability and catalytic activity for thiocholine (TCh) detection, the oxidation potential on the modified GCE was decreased almost by 50% while the peak current was increased almost by 100% compared with that on bare GCE. Meanwhile, it showed a low detection limit of less than 7.500 × 10−7 mol L−1 TCh.  相似文献   

20.
It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH=8.00, proteins can enhance the fluorescence of terbium (III) (Tb3+)-2-thenoyltrifluoroacetone (TTA)-sodium dodecyl benzene sulfonate (SDBS) system. Based on this, a sensitive method for the determination of proteins is proposed. The experiments indicate that under the optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of proteins in the range of 4.0×10−9-7.5×10−6 g/mL for bovine serum albumin (BSA), 5.0×10−9-1.5×10−5 g/mL for human serum albumin (HSA), 1.0×10−8-7.5×10−6 g/mL for egg albumin (EA). Their detection limits (S/N=3) are 0.5, 0.8 and 2.0 ng/mL, respectively. The interaction mechanism is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号