首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

2.
Zinc selenide nanocrystalline thin films are grown onto amorphous glass substrate from an aqueous alkaline medium, using chemical bath deposition (CBD) method. The ZnSe thin films are annealed in air for 4 h at various temperatures and characterized by structural, morphological, optical and electrical properties. The as-deposited ZnSe film grew with nanocrystalline cubic phase alongwith some amorphous phase present in it. After annealing metastable nanocrystalline cubic phase was transformed into stable polycrystalline hexagonal phase with partial conversion of ZnSe into ZnO. The optical band gap, Eg, of as-deposited film is 2.85 eV and electrical resistivity of the order of 106-107 Ω cm. Depending upon annealing temperature, decrease up to 0.15 eV and 102 Ω cm were observed in the optical band gap, Eg, and electrical resistivity, respectively.  相似文献   

3.
The extensive investigation of the annealing effect in nitrogen atmosphere on the structural optical and electrical properties of chemically deposited CdS films on SnO2 has been performed. The as-deposited film shows 2.45 eV band gap (Eg) and decreases with increasing annealing temperature. The film annealed at 623 K having pure hexagonal phase (a = 4.14 Å, c = 6.71 Å for [1 0 0] plane) and Eg = 2.36 eV shows 10 times higher conductivity for all temperature range, and shows two different activation energies Ea = 0.114 eV and Ea = 0.033 eV for the temperature range 395 K ≤ T ≤ 515 K and 515 K ≤ T ≤ 585 K, respectively. The structural parameters such as dislocation density, strain and optical parameters such as absorption and extinction coefficient are calculated and compared for all the films.  相似文献   

4.
TiO2 thin film was deposited on non-heated Si(1 0 0) substrate by RF magnetron sputtering. The as-deposited films were annealed by a conventional thermal annealing (CTA) and rapid thermal annealing (RTA) at 700 and 800 °C, and the effects of annealing temperature and method on optical properties of studied films were investigated by measuring the optical band gaps and FT-IR spectra. And we also compared the XRD patterns of the studied samples. The as-deposited film showed a mixed structure of anatase and brookite. Only rutile structures were found in samples annealed above 800 °C by CTA, while there are no special peaks except the weak brookite B(2 3 2) peak for the sample annealed at (or above) 800 °C by RTA. FT-IR spectra show the broad peaks due to Ti-O vibration mode in the range of 590-620 cm−1 for the as-deposited film as well as samples annealed by both annealing methods at 700 °C. The studied samples all had the peaks from Si-O vibration mode, which seemed to be due to the reaction between TiO2 and Si substrate, and the intensities of these peaks increased with increasing of annealing temperature. The optical band gap of the as-deposited film was 3.29 eV but it varied from 3.39 to 3.43 eV as the annealing temperature increased from 700 to 800 °C in the samples annealed by CTA. However, it varied from 3.38 to 3.32 eV as the annealing temperature increased from 700 to 800 °C by RTA.  相似文献   

5.
By using the radio frequency-magnetron sputtering (RF-MS) method, both pure ZnO and boron doped ZnO (ZnO:B) thin films were deposited on glass substrates at ambient temperature and then annealed at 450 °C for 2 h in air. It is found that both ZnO and ZnO:B thin films have wurtzite structure of ZnO with (0 0 2) preferred orientation and high average optical transmission (≥80%). Compared with the resistivity of 6.3 × 102 Ω cm for ZnO film, both as-deposited and annealed ZnO:B films exhibit much lower resistivity of 9.2 × 10−3 Ω cm and 7.5 × 10−3 Ω cm, respectively, due to increase in the carrier concentration. Furthermore, the optical band gaps of 3.38 eV and 3.42 eV for as-deposited and annealed ZnO:B films are broader than that of 3.35 eV for ZnO film. The first-principles calculations show that in ZnO:B thin films not only the band gap becomes narrower but also the Fermi level shifts up into the conduction band with respect to the pure ZnO film. These are consistent with their lower resistivities and suggest that in the process of annealing some substituted B in the lattice change into interstitial B because of its smaller ion radius and this transformation widens the optical band gap of ZnO:B thin film.  相似文献   

6.
Chemical bath deposition of ZnS thin films from NH3/SC(NH2)2/ZnSO4 solutions has been studied. The effect of various process parameters on the growth and the film quality are presented. The influence on the growth rate of solution composition and the structural, optical properties of the ZnS thin films deposited by this method have been studied. The XRF analysis confirmed that volume of oxygen of the as-deposited film is very high. The XRD analysis of as-deposited films shows that the films are cubic ZnS structure. The XRD analysis of annealed films shows the annealed films are cubic ZnS and ZnO mixture structure. Those results confirmed that the as-deposited films have amorphous Zn(OH)2. SEM studies of the ZnS thin films grown on various growth phases show that ZnS film formed in the none-film phase is discontinuous. ZnS film formed in quasi-linear phase shows a compact and a granular structure with the grain size about 100 nm. There are adsorbed particles on films formed in the saturation phase. Transmission measurement shows that an optical transmittance is about 90% when the wavelength over 500 nm. The band gap (Eg) value of the deposited film is about 3.51 eV.  相似文献   

7.
The Zinc Selenide (ZnSe) thin films have been deposited on SnO2/glass substrates by a simple and inexpensive chemical bath deposition (CBD). The structural, optical and electrical properties of ZnSe films have been characterized by X-ray diffraction (XRD), Energy Dispersive X-ray Analysis (EDAX), optical absorption spectroscopy, and four point probe techniques, respectively. The films have been subjected to different annealing temperature in Argon (Ar) atmosphere. An increase in annealing temperature does not cause a complete phase transformation whereas it affects the crystallite size, dislocation density and strain. The optical band gap (Eg) of the as-deposited film is estimated to be 3.08 eV and decreases with increasing annealing temperature down to 2.43 eV at 773 K. The as-deposited and annealed films show typical semiconducting behaviour, dρ/dT > 0. Interestingly, the films annealed at 373 K, 473 K, and 573 K show two distinct temperature dependent regions of electrical resistivity; exponential region at high temperature, linear region at low temperature. The temperature at which the transition takes place from exponential to linear region strongly depends on the annealing temperature.  相似文献   

8.
The influence of the gadolinium doping on the structural features and opto-electrical properties of ZnO:Al (ZAO) films deposited by radio frequency (RF) magnetron sputtering method onto glass substrates was investigated. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [0 0 2] direction. The Gd doped ZAO film with a thickness of 140 nm showed a high visible region transmittance of 90%. The optical band gap was found to be 3.38 eV for pure ZnO film and 3.58 eV for ZAO films while a drop in optical band gap of ZAO film was observed by Gd doping. The lowest resistivities of 8.4 × 10−3 and 10.6 × 10−3 Ω cm were observed for Gd doped and undoped ZAO films, respectively, which were deposited at room temperature and annealed at 150 °C.  相似文献   

9.
In this work, 650 nm polycrystalline SnS thin films were grown by thermal evaporation of high purity tin sulfide powder at 250 °C substrate temperature, followed by post deposition annealing at 200 °C and 300 °C for 2, 4 and 6 h, and at 400 °C for 2 and 4 h in argon ambient. The XRD pattern of the as-deposited and annealed SnS films led to the conclusion that the as-deposited films were polycrystalline in nature with preferentially oriented along (1 1 1) direction. The direct bandgap of all the films was found to be observed between 1.33 and 1.53 eV. Except for annealing at 400 °C all the films were nearly stoichiometric in nature, suggesting lower rate of desulfurization at that ambient. However, higher annealing temperature has resulted in the segregation of tin phase. All the films showed good absorption in the visible range. The as-deposited and annealed films showed p-type conductivity. Hall measurement revealed the carrier concentration and mobility ranging from 1015 to 1016 cm−3 and 0.8 to 31.6 cm2 V−1 s−1 respectively. The photoconductivity measurements of all the SnS films were carried out by recording the lowering of resistance of the respective films with time under illumination.  相似文献   

10.
Ge thin films with a thickness of about 110 nm have been deposited by electron beam evaporation of 99.999% pure Ge powder and annealed in air at 100-500 °C for 2 h. Their optical, electrical and structural properties were studied as a function of annealing temperature. The films are amorphous below an annealing temperature of 400 °C as confirmed by XRD, FESEM and AFM. The films annealed at 400 and 450 °C exhibit X-ray diffraction pattern of Ge with cubic-F structure. The Raman spectrum of the as-deposited film exhibits peak at 298 cm−1, which is left-shifted as compared to that for bulk Ge (i.e. 302 cm−1), indicating nanostructure and quantum confinement in the as-deposited film. The Raman peak shifts further towards lower wavenumbers with annealing temperature. Optical band gap energy of amorphous Ge films changes from 1.1 eV with a substantial increase to ∼1.35 eV on crystallization at 400 and 450 °C and with an abrupt rise to 4.14 eV due to oxidation. The oxidation of Ge has been confirmed by FTIR analysis. The quantum confinement effects cause tailoring of optical band gap energy of Ge thin films making them better absorber of photons for their applications in photo-detectors and solar cells. XRD, FESEM and AFM suggest that the deposited Ge films are composed of nanoparticles in the range of 8-20 nm. The initial surface RMS roughness measured with AFM is 9.56 nm which rises to 12.25 nm with the increase of annealing temperature in the amorphous phase, but reduces to 6.57 nm due to orderedness of the atoms at the surface when crystallization takes place. Electrical resistivity measured as a function of annealing temperature is found to reduce from 460 to 240 Ω-cm in the amorphous phase but drops suddenly to 250 Ω-cm with crystallization at 450 °C. The film shows a steep rise in resistivity to about 22.7 KΩ-cm at 500 °C due to oxidation. RMS roughness and resistivity show almost opposite trends with annealing in the amorphous phase.  相似文献   

11.
ZnO thin films were grown using Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. Annealing temperatures and film thickness effect on the structural, morphological, optical and electrical properties of the films were studied. For this as-deposited films were annealed at 200, 300, 400 and 500 °C for 30 min in oxygen atmosphere. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that the films are covered well with glass substrates and have good polycrystalline structure and crystalline levels. The film thickness effect on band gap values was investigated and band gap values were found to be within the range of 3.49-3.19 eV. The annealing temperature and light effect on electrical properties of the films were investigated and it was found that the current increased with increasing light intensity. The resistivity values were found as 105 Ω-cm for as-deposited films from electrical measurements. The resistivity decreased decuple with annealing temperature and decreased centuple with light emission for annealed films.  相似文献   

12.
In this work, exchange bias and coercivity enhancement in ferromagnet (FM)–antiferromagnet (AFM) bilayer have been investigated. CoO film (50 nm) was deposited by sputtering with a relatively high oxygen partial pressure. The deposited films were subsequently annealed at varied temperature up to 973 K in the air atmosphere. The CoO film shows a disordered structure in the as-deposited state and an increase of crystallinity after annealing characterized by XRD and Raman spectra. A 40-nm Co film was deposited on the as-deposited CoO and annealed films. The Co–CoO bilayer shows a large exchange bias up to 1600 Oe and relatively high coercivity up to 3200 Oe (HC−) at 5 K, which is much larger than that of crystalline Co–CoO bilayer films without any treatment. The spin glass behavior combined with increasing crystallinity, surface roughness of CoO after annealing may be attributed to the large exchange bias and high coercivity.  相似文献   

13.
Thin films of copper oxide were obtained through thermal oxidation (100-450 °C) of evaporated metallic copper (Cu) films on glass substrates. The X-ray diffraction (XRD) studies confirmed the cubic Cu phase of the as-deposited films. The films annealed at 100 °C showed mixed Cu-Cu2O phase, whereas those annealed between 200 and 300 °C showed a single cubic Cu2O phase. A single monoclinic CuO phase was obtained from the films annealed between 350 and 450 °C. The positive sign of the Hall coefficient confirmed the p-type conductivity in the films with Cu2O phase. However, a relatively poor crystallinity of these films limited the p-type characteristics. The films with Cu and CuO phases show n-type conductivity. The surface of the as-deposited is smooth (RMS roughness of 1.47 nm) and comprised of uniformly distributed grains (AFM and SEM analysis). The post-annealing is found to be effective on the distribution of grains and their sizes. The poor transmittance of the as-deposited films (<1%) is increased to a maximum of ∼80% (800 nm) on annealing at 200 °C. The direct allowed band gap is varied between 2.03 and 3.02 eV.  相似文献   

14.
Palladium (Pd) and cobalt (Co) Schottky barrier diodes were fabricated on n-Ge (1 0 0). The Pd-Schottky contacts were deposited by resistive evaporation while the Co-contacts were deposited by resistive evaporation and electron beam deposition. Current-voltage (I-V), capacitance-voltage (C-V) and deep level transient spectroscopy (DLTS) measurements were performed on as-deposited and annealed samples. Electrical properties of Pd and Co samples annealed between 30 and 600 °C indicate the formation of one phase of palladium germanide and two phases of cobalt germanide. No defects were observed for the resistively evaporated as-deposited Pd-and Co-Schottky contacts. A hole trap at 0.33 eV above the valence band was observed on the Pd-Schottky contacts after annealing at 300 °C. An electron trap at 0.37 eV below the conduction band and a hole trap at 0.29 eV above the valence band was observed on as-deposited Co-electron beam deposited Schottky contacts. Rutherford back scattering (RBS) technique was also used to characterise the Co-Ge, for as-deposited and annealed samples.  相似文献   

15.
By electrochemically controlling the structure of the surface aggregates, the grain microstructure has been optimized to yield mesoporous thin films of tungsten oxide (WO3) at the electrode-electrolyte interface in a peroxotungstate sol in the presence of a structure-directing agent (Triton) at room temperature. Apart from the dominant ultrafine nanocrystallites and pores (5-10 nm), well-developed abutting grains (25-100 nm) and nanofibrils also constitute an integral part of the film matrix. X-ray photoemission spectra reveal the as-deposited film (WO3−x) to be constituted by a high proportion of W6+ states with a low oxygen deficiency (x = 0.02). A relatively high W5+ content in the film, upon intercalation of 18 mC cm−2 charge translates into a large coloring efficiency (ηVIS ∼ 70 cm2 C−1) and transmission modulation. At a lithium intercalation level of 22 mC cm−2, in addition to W5+ and W6+ states, the film also comprises of W4+ states. The extremely fast color-bleach kinetics (3 and 2 s, respectively, for a 50% change in transmittance) shown by the as-deposited WO3 film are repercussions of the mesopore morphology, the multiple nanostructures and the sixfold channels of its hexagonal modification. The film shows a high cycling stability as the switching times do not show any significant decline even after 3500 repetitive cycles. Coloration efficiency over the solar and photopic regions and current density for lithium intercalation for the as-deposited film are superior to that observed for the films annealed at 100, 250 and 500 °C. The abysmal electrochromic response of the annealed films is a consequence of surface defects like cracks and uncontrolled densification and pore shrinkage.  相似文献   

16.
Tin oxide (SnO2) thin films (about 200 nm thick) have been deposited by electron beam evaporation followed by annealing in air at 350-550 °C for two hours. Optical, electrical and structural properties were studied as a function of annealing temperature. The as-deposited film is amorphous, while all other annealed films are crystalline (having tetragonal structure). XRD suggest that the films are composed of nanoparticles of 5-10 nm. Raman analysis and optical measurements suggest quantum confinement effects that are enhanced with annealing temperature. For instance, Raman peaks of the as-deposited films are blue-shifted as compared to those for bulk SnO2. Blue shift becomes more pronounced with annealing temperature. Optical band gap energy of amorphous SnO2 film is 3.61 eV, which increases to about 4.22 eV after crystallization. Two orders of magnitude decrease in resistivity is observed after annealing at 350-400 °C due to structural ordering and crystallization. The resistivity, however, increases slightly with annealing temperature above 400 °C, possibly due to improvement in stoichiometry and associated decrease in charge carrier density.  相似文献   

17.
Thin films of CdTe have been deposited onto stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using electrodeposition technique. The different preparative parameters, such as deposition time, bath temperature and pH of the bath have been optimized by photoelectrochemical (PEC) technique to get good quality photosensitive material. The deposited films are annealed at different temperature in presence of air. Annealing temperature is also optimized by PEC technique. The film annealed at 200 °C showed maximum photosensitivity. Different techniques have been used to characterize as deposited and also as annealed (at 200 °C) CdTe thin film. The X-ray diffraction (XRD) analysis showed the polycrystalline nature, and a significant increase in the XRD peak intensities is observed for the CdTe films after annealing. Optical absorption shows the presence of direct transition with band gap energy 1.64 eV and after annealing it decreases to 1.50 eV. Energy dispersive analysis by X-ray (EDAX) study for the as-deposited and annealed films showed nearly stoichiometric compound formation. Scanning electron microscopy (SEM) reveals that spherically shaped grains are more uniformly distributed over the surface of the substrate for the CdTe film.  相似文献   

18.
Formation of cadmium hydroxide at room temperature onto glass substrates from an aqueous alkaline cadmium nitrate solution using a simple soft chemical method and its conversion to cadmium oxide (CdO) by thermal annealing treatment has been studied in this paper. The as-deposited film was given thermal annealing treatment in oxygen atmosphere at 450 °C for 2 h for conversion into cadmium oxide. The structural, surface morphological and optical studies were performed for as-deposited and the annealed films. The structural analyses revealed that as-deposited films consists of mixture of Cd(OH)2 and CdO, while annealed films exhibited crystalline CdO. From surface morphological studies, conversion of clusters to grains after annealing was observed. The band gap energy was changed from 3.21 to 2.58 eV after annealing treatment. The determination of elementals on surface composition of the core-shell nanoparticles of annealed films was carried out using X-ray photoelectron spectroscopy (XPS).  相似文献   

19.
Highly transparent and conductive Boron doped zinc oxide (ZnO:B) thin films were deposited using chemical spray pyrolysis (CSP) technique on glass substrate. The effect of variation of boron doping concentration in reducing solution on film properties was investigated. Low angle X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal wurtzite structure and have preferred orientation in [002] direction. The films with resistivity 2.54×10−3 Ω-cm and optical transmittance >90% were obtained at optimized boron doping concentration. The optical band gap of ZnO:B films was found ∼3.27 eV from the optical transmittance spectra for the as-deposited films. Due to their excellent optical and electrical properties, ZnO:B films are promising contender for their potential use as transparent window layer and electrodes in solar cells.  相似文献   

20.
Solution Growth Technique (SGT) has been used for deposition of Zn1−xCdS nanocrystalline thin films. Various parameters such as solution pH (10.4), deposition time, concentration of ions, composition and deposition and annealing temperatures have been optimized for the development of device grade thin film. In order to achieve uniformity and adhesiveness of thin film on glass substrate, 5 ml triethanolamine (TEA) have been added in deposition solution. The as-deposited films have been annealed in Rapid Thermal Annealing (RTA) system at various temperature ranges from 100 to 500 °C in air. The changes in structural formation and optical transport phenomena have been studied with annealing temperatures and composition value (x). As-deposited films have two phases of ZnS and CdS, which were confirmed by X-ray diffraction studies; further the X-ray analysis of annealed (380 °C) films indicates that the films have nanocrystalline size (150 nm) and crystal structure depends on the films stoichiometry and annealing temperatures. The Zn0.4CdS films annealed at 380 °C in air for 5 min have hexagonal structure where as films annealed at 500 °C have represented the oxide phase with hexagonal structure. Optical properties of the films were studied in the wavelength range 350-1000 nm. The optical band gap (Eg=2.94-2.30 eV) decreases with the composition (x) value. The effect of air rapid annealing on the photoresponse has also been observed on Zn1−xCdS nanocrystal thin films. The Zn1−xCdS thin film has higher photosensitivity at higher annealing temperatures (380-500 °C), and films also have mixed Zn1−xCdS/Zn1−xCdSO phase with larger grain size than the as-deposited and films annealed up to 380 °C. The present results are well agreed with the results of other studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号