首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitized luminescence behavior of lanthanide (Ln=Eu3+, Tb3+) macrocyclic cyclen (1,4,7,10-tetraazacyclododecane) complexes bearing one or four benzophenone (BP) moieties as antenna (LnL1 and LnL4) has been studied in water. Despite higher molar extinction coefficient of EuL4 owing to four antennae, it shows only one-thirtieth the luminescence intensity of EuL1. Energy level of triplet excited-state of BP antenna (ET) is only a few kJ mol−1 higher than that of 5D2 excited-state of Eu3+, thus promoting a back energy transfer (BET) from 5D2 of Eu3+ to ground-state BP antennae. On EuL4 bearing four antennae, BET occurs more rapidly than that on EuL1, thus exhibiting much weaker luminescence. For Tb complexes, the energy gap between ET of BP antenna and 5D4 excited state of Tb3+ is large enough (>13 kJ mol−1), such that practically no BET occurs. The luminescence intensity of TbL4 is, however, lower (two-third) than that of TbL1. Time-resolved luminescence measurement reveals that hydration number of Tb3+ within TbL4 is twice that within TbL1. This is because the structural distortion of ligands on TbL4, caused by an intramolecular dipole-dipole interaction among the BP antennae, allows coordination of higher number of H2O molecules to Tb3+, thus leading to a strong Tb luminescence quenching via O-H oscillators.  相似文献   

2.
Calcium lanthanide oxyborate doped with rare-earth ions LnCa4O(BO3)3:RE3+ (LnCOB:RE, Ln=Y, La, Gd, RE=Eu, Tb, Dy, Ce) was synthesized by the method of solid-state reaction at high temperature. Their fluorescent spectra were measured from vacuum ultraviolet (VUV) to visible region at room temperature. Their excitation spectra all have a broadband center at about 188 nm, which is ascribed to host absorption. Using Dorenbos’ and Jφrgensen's work [P. Dorenbos, J. Lumin. 91 (2000) 91, R. Resfeld, C.K. Jφrgensen, Lasers and Excite States of Rare Earth [M], Springer, Berlin, 1977, p. 45], the position of the lowest 5d levels E(Ln,A) and charge transfer band Ect were calculated and compared with their excitation spectra.Eu3+ and Tb3+ ions doped into LnCOB show efficient luminescence under VUV and UV irradiation. In this system, Ce3+ ions do not show efficient luminescence and quench the luminescence of Tb3+ ions when Tb3+ and Ce3+ ions are co-doped into LnCOB. GdCOB doped with Dy3+ shows yellowish white light under irradiation of 254 nm light for the reason that Gd3+ ions transfer the energy from itself to Dy3+. Because of the existence of Gd3+, the samples of GdCOB:RE3+ show higher excitation efficiency than LaCOB:RE3+ and YCOB:RE3+, around 188 nm, which indicates that the Gd3+ ions have an effect on the host absorption and can transfer the excitation energy to the luminescent center such as Tb3+, Dy3+ and Eu3+.  相似文献   

3.
In this paper, Eu3+ β-diketone Complexes with the two ligands 1-(2-naphthoyl)-3, 3, 3-trifluoroacetonate (TFNB) and 2’2-bipyridine (bpy) have been synthesized. Furthermore, we reported a systematical study of the co-fluorescence effect of Eu(TFNB)3bpy doped with inert rare earth ions (La3+, Gd3+ and Y3+) and luminescence ion Tb3+. The co-luminescence effect can be found by studying the luminescence spectra of the doped complexes, which means that the existence of the other rare earth ions (La3+, Y3+, Gd3+ and Tb3+) can enhance the luminescence intensity of the central Eu3+, which may be due to the intramolecular energy transfer between rare earth ions and Eu3+. The efficient intramolecular energy transfer in all the complexes mainly occurs between the ligand TFNB and the central Eu3+. Full characterization and detail studies of luminescence properties of all these synthesized materials were investigated in relation to co-fluorescence effect between the central Eu3+ and other inert ions. Further investigation into the luminescence properties of all the complexes show that the characteristic luminescence of the corresponding Eu3+ through the intramolecular energy transfers from the ligand to the central Eu3+. Meantime, the differences in luminescence intensity of the 5D07F2 transition, in the 5D0 lifetimes and in the 5D0 luminescence quantum efficiency among all the synthesized materials confirm that the doped complex Eu0.5Tb0.5(TFNB)3bpy exhibits higher 5D0 luminescence quantum efficiency and longer lifetime than the pure Eu(TFNB)3bpy complex and other materials.  相似文献   

4.
This work reports the synthesis and luminescent properties of complexes of europium(III) with 2-thienyltrifluoroacetonate (HTTA), terephthalic acid (TPA) and phenanthroline (Phen), in the solid state. The new complexes were characterized by elemental analysis, infrared (IR) spectroscopy, scanning electronic microscopy (SEM) and thermal stability analysis. Both binuclear complex Eu2(TPA)(TTA)4Phen2 and polynuclear complex Eu(TPA)(TTA)Phen present better thermal stability than the mononuclear complex Eu(TTA)3Phen does. The formation of the binuclear/polynuclear structure of the complexes appears to be responsible for the enhancement of the thermal stability. The emission spectra show narrow emission bands that arise from the 5D07FJ (J=0-4) transition of the Eu3+ ion. The spectral data of the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 present only one sharp peak in the region of the 5D07F0 transition indicating that only one Eu3+ ion species is present in each sample. In addition, the luminescence decay curves of the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 fit a single-exponential decay law. The values of quantum efficiencies of the emitting 5D0 level for the complexes Eu(TPA)(TTA)Phen and Eu2(TPA)(TTA)4Phen2 are 29% and 28%, respectively.  相似文献   

5.
Dinuclear lanthanide (Ln=Tb3+ or Eu3+) complexes (Ln2L2) of two octadentate macrocyclic polyaminopolycarboxylic ligands connected through a benzophenone (BP) moiety (L2) have been synthesized. Sensitized luminescence properties of Ln2L2 in water have been studied in comparison to those of BP-conjugated mononuclear Ln complexes (LnL1). The luminescence intensity of Tb2L2 is lower than that of TbL1 because of lower triplet quantum yield of the BP moiety. In contrast, Eu2L2 shows higher intensity than EuL1. For both Eu complexes, energy level of triplet excited-state BP (3BP*) is only 3 kJ mol−1 higher than that of 5D2 excited-state of Eu3+. The 5D2 state formed by a triplet-energy transfer (TET) from 3BP* is therefore deactivated by a back energy transfer (BET) to the ground-state BP, resulting in low luminescence intensity of EuL1. In contrast, within Eu2L2, TET from 3BP* to 5D0 state of two Eu3+ ions is accelerated, thus leading to higher luminescence intensity. Another notable feature of Eu2L2 is the luminescence quantum yield independent of its concentration. In contrast, for EuL1 system, an intermolecular BET occurs from 5D2 state of Eu3+ to the ground-state BP conjugated to another EuL1 complex, resulting in a yield decrease with the concentration increase.  相似文献   

6.
At 300°K the fluorescent lifetimes of the levels5D0 of Eu3+ and5D4 of Tb3+ were measured in the RE(C2H5SO4)3·9H2O, RE(BrO3)3·9H2O, RECl3·6H2O, RE(NO3)3·6H2O and (RE)2(SO4)3·8H2O. The fluorescent lifetimes of the above mentioned hydrated crystals are preliminary determined by radiationless transitions. An empirical relation can be obtained for the probabilityw for the radiationless transitions of the formw=const·α RE·α Lattice. The factorsα RE andα Lattice depend only on the rare-earth ion or the lattice respectively. A structure of the interaction Hamiltonian between the rare-earth ion and the lattice is proposed, which leads to the empirically found relation. The influence of electron- andX-irradiation on the lifetime of the level5D4 in TbCl3·6H2O was investigated at 77°K. A decrease of the lifetime and a nonexponential decay of the fluorescence were found. By heating up the crystal to room temperature thermoluminescence and annealing of the irradiation defects are observed.  相似文献   

7.
Xi Chen 《Journal of luminescence》2011,131(12):2697-2702
In this work, we report preparation, characterization and luminescent mechanism of a phosphor Sr1.5Ca0.5SiO4:Eu3+,Tb3+,Eu2+ (SCS:ETE) for white-light emitting diode (W-LED)-based near-UV chip. Co-doped rare earth cations Eu3+, Tb3+ and Eu2+ as aggregated luminescent centers within the orthosilicate host in a controlled manner resulted in the white-light phosphors with tunable emission properties. Under the excitation of near-UV light (394 nm), the emission spectra of these phosphors exhibited three emission bands: one broad band in the blue area, a second band with sharp lines peaked in green (about 548 nm) and the third band in the orange-red region (588-720 nm). These bands originated from Eu2+ 5d→4f, Tb3+5D47FJ and Eu3+5D07FJ transitions, respectively, with comparable intensities, which in return resulted in white light emission. With anincrease of Tb3+ content, both broad Eu2+ emission and sharp Eu3+ emission increase. The former may be understood by the reduction mechanism due to the charge transfer process from Eu3+ to Tb3+, whereas the latter is attributed to the energy transfer process from Eu2+ to Tb3+. Tunable white-light emission resulted from the system of SCS:ETE as a result of the competition between these two processes when the Tb3+ concentration varies. It was found that the nominal composition Sr1.5Ca0.5SiO4:1.0%Eu3+, 0.07%Tb3+ is the optimal composition for single-phased white-light phosphor. The CIE chromaticity calculation demonstrated its potential as white LED-based near-UV chip.  相似文献   

8.
In the context, some lanthanide (Eu3+, Tb3+ and Sm3+) complexes with conjugated carboxylic acids (pyridine-carboxylic acids derivatives) have been synthesized and characterized. The low temperature fluorescent spectra for these complexes have been measured at nitrogen atmosphere (77 K), indicating that the central Ln3+ ions locate in an equivalent coordination environment with low symmetry for most of these lanthanide complexes belonging to dimeric or polymeric structure. Therefore, the electronic dipole transition (supersensitive transition) (5D07F2 for Eu3+, 5D47F6 for Tb3+, 4G5/26H9/2 for Sm3+) and magnetic dipole transition (5D07F1 for Eu3+, 5D47F5 for Tb3+, 4G5/26H5/2 for Sm3+) show the regular change in the corresponding split number of fluorescent spectra, which can be realized to predict the fine structure of lanthanide complexes.  相似文献   

9.
Excitation and luminescence properties of Eu3+, Tb3+ and Er3+ ions in lead phosphate glasses have been studied. From excitation spectra of Eu3+ ions, the electron–phonon coupling strength and phonon energy of the glass host were calculated and compared to that obtained by Raman spectroscopy. Main intense and long-lived luminescence bands are related to the 5D07F2 (red) transition of Eu3+, the 5D47F5 (green) transition of Tb3+ and the 4I13/24I15/2 (near-infrared) transition of Er3+. The critical transfer distances, the donor–acceptor interaction parameters and the energy transfer probabilities were calculated using the fitting of the luminescence decay curves from 5D0 (Eu3+), 5D4 (Tb3+) and 4I13/2 (Er3+) excited states. The energy transfer probabilities for Eu3+ (5D0), Tb3+ (5D4) and Er3+ (4I13/2) are relatively small, which indicates low self-quenching luminescence of rare earth ions in lead phosphate glasses.  相似文献   

10.
The emission spectrum of neat Sr3Tb(PO4)3 upon excitation at 337 nm in the levels above 5D3 is dominated by 5D4 emission and no significant emission from 5D3 is observed due to efficient cross relaxation involving the Tb3+ levels. On the other hand, the emission spectrum of the same host containing 10 mol% Eu3+ upon excitation at the same wavelength (in the Tb3+ levels) is dominated by strong emission bands from the 5D0 level of Eu3+. This clearly indicates that Tb3+→Eu3+ energy transfer is present. The excitation spectrum of the Eu3+ 5D0 emission is dominated by Tb3+ bands extending in the UV region.The presence of 10 mol% Eu3+ in Sr3Tb(PO4)3 very strongly shortens the 5D4 decay time. The decay curve is not far from exponential, indicating that the energy transfer to Eu3+ is accompanied by fast energy migration. The transfer regimes are identified and the donor–donor and donor–acceptor transfer microparameters are quantified under the assumption of electric dipole–electric dipole interactions.  相似文献   

11.
Uninuclear europium (Eu), as well as binuclear Eu and terbium (Tb), complexes were synthesized using acrylic acid (AA) as the first ligand and 1,10-phenanthroline (Phen) as the second ligand. The relative weight ratio of the europium (III) (Eu3+) to terbium (III) (Tb3+) ions of the binuclear complex was 1:1 as determined via energy dispersive X-ray analysis. The structures of the Eu(AA)3Phen and Eu0.5Tb0.5(AA)3Phen complexes were characterized by Fourier transform infrared spectroscopy. A series of tri-cellulose acetate (TCA)/ the Eu(AA)3Phen and TCA/Eu0.5Tb0.5(AA)3Phen composites were prepared by solution blending, and their luminescent properties were investigated by fluorescence spectrophotometry. The excitation spectra of all composites indicated that the TCA matrix probably affected the energy absorption and transfer of organic ligands. In TCA/Eu0.5Tb0.5(AA)3Phen composites the introduced Tb3+ ions had some influence on energy absorption and transfer of organic ligands; the energy transfer process of the complex is suggested to be as follows: Phen→AA→Tb3+ion→Eu3+ion. The emission spectra indicated that the luminescent intensity of the TCA/Eu0.5Tb0.5(AA)3Phen composites was noticeably stronger than that of the TCA/Eu(AA)3Phen composites, suggesting that the comparatively stable and high-efficiency energy transfer process was only slightly influenced by the TCA matrix. In summary, the TCA/Eu0.5Tb0.5(AA)3Phen (90/10) composite possesses fine luminescent properties for potential usage as red fluorescent materials.  相似文献   

12.
Synthesis and photoluminescence (PL) investigations of lithium metasilicate doped with Eu3+, Tb3+ and Ce3+ were carried out. PL spectra of Eu-doped sample showed peaks corresponding to the 5D07Fj (j=1, 2, 3 and 4) transitions under ultraviolet excitation. Strong red emission coming from the hypersensitive 5D07F2 transition of Eu3+ ion suggested the presence of the dopant ion in structurally disordered environment. Tb3+-doped silicate sample showed blue-green emission corresponding to the 5D47Fj (j=6, 5 and 4) transitions. Ce-doped sample under excitation from UV, showed a broad emission band in the region 350-370 nm with shoulders around 410 nm. The fluorescence lifetimes of Eu3+ and Tb3+ ions were found out to be 790 and 600 μs, respectively. For Ce3+, the lifetime was of the order of 45 ns. PL spectra of the europium- and terbium-doped samples were compared with commercial red (Y2O3:Eu3+) and green (LaPO4:Tb3+) phosphors, respectively. It was found that the emission from the doped silicate sample was 37% of the commercial phosphor in case of the Tb-doped sample and 8% of the commercial phosphor in case of the Eu-doped sample.  相似文献   

13.
Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were synthesized by the hydrothermal reaction method. The structural refinement was conducted on the base of the X-ray powder diffraction (XRD) measurements. The surface properties of the Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers were investigated by the measurements such as the scanning electron microscope (SEM), transmission electron microscope (TEM), and the energy dispersive spectrum (EDS). The nanofiber has a diameter of about 100 nm and a length of several micrometers. The luminescence properties such as photoluminescence excitation (PLE) and emission spectra (PL), decay lifetime, color coordinates, and the absolute internal quantum efficiency (QE) were reported. Ca2B2O5:Eu3+ nanofibers show the red luminescence with CIE coordinates of (x = 0.41, y = 0.51) and the luminescence lifetime of 0.63 ms. The luminescence of Ca2B2O5:Tb3+ nanofibers is green color (x = 0.29, y = 0.53) with the lifetime of 2.13 ms. However, Dy3+-doped Ca2B2O5 nanofibers present a single-phase white-color phosphor with the fluorescence decay of 3.05 ms. Upon near-UV excitation, the absolute quantum efficiency is measured to be 65, 35, and 37 % for Eu3+-, Tb3+-, Dy3+-doped Ca2B2O5 nanofibers, respectively. It is suggested that Ca2B2O5:RE (RE = Eu3+, Tb3+, Dy3+) nanofibers could be an efficient phosphor for lighting and display.  相似文献   

14.
Phosphors of nanoparticles LaSrAl3O7:RE3+(REEu, Tb) have been prepared by a sol–gel method. The structure and luminescent properties of LaSrAl3O7:Eu3+ and LaSrAl3O7:Tb3+ phosphors were characterized by X-ray diffraction and atomic force microscopy (AFM), photoluminescence excitation and emission spectra were utilized. From X-ray diffraction (XRD) patterns, it is indicated that the phosphor LaSrAl3O7 forms without impurity phase at 900 °C. From atomic force microscopy (AFM) images, it is shown that the crystal size of the phosphores are about 60–80 nm. Upon excitation with UV irradiation, it is shown that there is a strong emission at around 617 nm corresponding to the forced electric dipole 5D07F2 transition of Eu3+, and at around 545 nm corresponding to the 5D47F5 transition of Tb3+. The dependence of photoluminescence intensity on Eu3+(or Tb3+) concentration and annealing temperature were also studied in detail.  相似文献   

15.
The luminescent properties of CaYBO4:Ln(Ln=Eu3+, Tb3+) were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) region. The CT band of Eu3+ at about 245 nm blue-shifted to 230 nm in VUV excitation spectrum; the band with the maximum at 183 nm was considered as the host lattice absorption. For the sample of CaYBO4:0.08Tb3+, the bands at about 235 and 263 nm were assigned to the f-d transitions of Tb3+ and the CT band of Tb3+ was calculated according to Jφrgensen's theory. Under UV and VUV excitation, the main emission of Eu3+ corresponding to the 5D0-7F2 transition located at about 610 nm and two intense emission of Tb3+ from the 5D4-7F5 transition had been observed at about 542 and 552 nm, respectively. With the incorporation of Gd3+ into the host lattice of CaYBO4, the luminescence of Tb3+ was enhanced while that of Eu3+ was decreased because of their different excitation mechanism.  相似文献   

16.
YBO3:Eu3+/Tb3+ nanocrystalline thin films were successfully deposited onto quartz glass substrates by Pechini sol-gel dip-coating method, using rare-earth nitrates and boric acid as starting materials. The crystal structure, morphology, chemical composition and photoluminescence property of the films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and fluorescence spectrophotometer. The results of XRD, AFM, XPS and FTIR revealed that the films were composed of spherical YBO3:Eu3+/Tb3+ nanocrystals with average grain size of 80 nm. The YBO3:Eu3+ film exhibited strong orange emission at 595 nm and red emission at 615 nm, which were, respectively ascribed to the (5D07F1) and (5D07F2) transitions of Eu3+. The YBO3:Tb3+ film showed dominant green emission at 545 nm due to the 5D4-7F5 transition of Tb3+.  相似文献   

17.
MCM-41 mesoporous silica has been functionalized with aromatic carboxylic acids salicylic acid (Sal) and 2-hydroxyl-3-methylbenzoic acid (HMBA) through co-condensation approach of tetraethoxysilane (TEOS) in the presence of the cetyltrimethylammonium bromide (CTAB) surfactant as a template. Organic ligands salicylic acid or 2-hydroxyl-3-methylbenzoic acid grafted to the coupling agent 3-(triethoxysilyl)-propyl isocyanate (TEPIC) was used as the precursor for the preparation of an organic–inorganic hybrid materials. Novel organic–inorganic mesoporous luminescent hybrid containing Ln3+ (Tb3+, Eu3+) complexes covalently attached to the functionalized ordered mesoporous MCM-41, which were designated as Ln-Sal-MCM-41 and Ln-HMBA-MCM-41, respectively, were obtained by sol–gel process. The luminescence properties of these resulting materials were characterized in detail, and the results reveal that luminescent mesoporous materials have high surface area, uniformity in the mesopore structure and good crystallinity. Moreover, the mesoporous material covalently bonded Tb3+ complex (Tb-Sal-MCM-41 and Tb-HMBA-MCM-41) exhibit the stronger characteristic emission of Tb3+ and longer lifetime than the corresponding Eu-containg materials Eu-Sal-MCM-41 and Eu-HMBA-MCM-41 due to the triplet state energy of modified organic ligands Sal-TEPIC and HMBA-TEPIC match with the emissive energy level of Tb3+ very well. In addition, the luminescence lifetime and emission quantum efficiency of 5D0 Eu3+ excited state also indicates the efficient intramolecular energy transfer process in Tb-SAL-MCM-41 and Tb-HMBA-MCM-41.  相似文献   

18.
The spectroscopic properties in UV-excitable range for the phosphors of Sr3La2(BO3)4:RE3+ (RE3+=Eu3+, Ce3+, Tb3+) were investigated. The phosphors were synthesized by conventional solid-state reactions. The photoluminescence (PL) spectra and commission international de I'Eclairage (CIE) coordinates of Sr3La2(BO3)4:RE3+ were investigated. The f-d transitions of Eu3+, Ce3+ and Tb3+ in the host lattices are assumed and corroborated. The PL and PL excitation (PLE) spectra indicate that the main emission wavelength of Sr3La2(BO3)4:Eu3+ is 611 nm, and Sr3La2(BO3)4:Ce3+ shows dominating emission peak at 425 nm, while Sr3La2(BO3)4:Tb3+ displays green emission at 487, 542, 582 and 620 nm. These phosphors were prepared by simple solid-state reaction at 1000 °C. There are lower reactive temperature and more convenient than commercial phosphors. The Sr3La2(BO3)4:Tb3+ applied to cold cathode fluorescent lamp was found to emit green light and have a major peak wavelength at around 542 nm. These phosphors may provide a new kind of luminescent materials under ultraviolet excitation.  相似文献   

19.
Photoexcitation of EuCl3.6H2O and TbCl3.6H2O mixtures in DMSO at various wavelengths brings about a decrease in the fluorescence intensity of Tb3+ and a subsequent enhancement in the fluorescence intensity of Tb3+ provided that [Tb3+] < [Eu3+]. The average value of the electronic excitation energy transfer rate constant k10 which was found to be independent of the excitation wavelength, was determined to be about 1.50 × 103 M-1 s-1. Photoexcitation of Tb3+ and subsequent population of high energy excited states is accompanied by rapid nonradiative de-excitation processes to the lowest excited state 5D4, which is the origin of the energy transfer process. A lower limit for the value of the reaction rate constant, associated with the transition 5D3 ? 5D4, namely k5, is of the order of 105 ?106 s-1. Excitation at conditions leading to the exclusive population of the 5D4 state of Tb3+ gave rise to a value of k10 equal to (2.2 ± 0.4) × 103 M-1 s-1 and a critical separation (R0)exp between Tb3+ and Eu3+ of about 13 Å. A theoretical value of R0 equal to 14.2 Å was calculated. The energy transfer process does not appear to take place via clear cut dipole-dipole interactions but rather via complex multipole and/or exchange interactions.  相似文献   

20.
This paper reports on the photoluminescence (PL) and time-resolved properties of Ce3+, Eu3+, and Tb3+ in novel LiSr4(BO3)3 powder phosphors. Ce3+ shows an emission band peaking at 420 nm under 350-nm UV excitation. Energy transfer from Ce3+ to Mn2+ takes place in the co-doped samples. Eu3+ shows red emission under near UV excitation. LiSr4(BO3)3:Eu3+ phosphor could be a suitable candidate for phosphor-converted solid state lighting. The luminescence lifetime is 2.13 ms for Eu3+ in LiSr4(BO3)3:0.001Eu3+. As Eu3+ concentration increasing, the decay curves deviate from exponential behavior. Tb3+ shows the strongest 5D47 F5 emission line at 540 nm. Decay curves of 5D47 F5 and 5D37 F5 emission with different Tb3+ concentrations were also measured. Cross-relaxation process is discussed based on the decay curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号