首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure and Pb2+-doped CsI crystals have been grown by the Bridgemann technique. Optical absorption, thermoluminescence (TL) and photoluminescence (PL) measurements have been performed. In undoped and Pb2+-doped cesium iodide crystals, F-centers and V-centers have been produced at 770 nm and 350 nm, respectively. In Pb2+-doped crystals, additional centers at 373 nm, 290 nm and 258 nm bands have been produced. In undoped samples, only two glow peaks at 343 K and 373 K have been produced, and in Pb2+-doped samples additional glow peaks at 383 K and 423 K have been produced. For all the samples, TL emission, PL and excitation measurements have been performed.  相似文献   

2.
S B S Sastry  S Sapru 《Pramana》1980,15(3):271-278
Optical absorption, thermoluminescence glow and emission spectra of RbBr:Ca2+ and RbBr:OH have been studied and analysed. It is observed that both Ca2+ and OH ions enhance theF-centre concentration.F Z1 band in RbBr:Ca2+ appears at 1.55 eV. TL glow peak corresponding toF Z1 centre on analysis gives a trap depth of 0.84 eV. OH ions in the crystal seem to act as TL ‘killers’. Spectral distribution of emission under the glow peaks shows five bands around 1.5, 1.8, 2.1, 2.5 and 2.9 eV. Probable models of TL mechanism are suggested to explain the observed TL emission bands.  相似文献   

3.
Electron Paramagnetic Resonance(EPR), Photoluminescence(PL), Thermoluminescence (TL) and other optical studies of γ-irradiated KBr, KCl:Ce3+ single crystals. Cerium when doped into the KBr, KCl is found to enter the host lattice in its trivalent state and act as electron trap during γ-irradiation, thereby partially converting itself to Ce2+. The Photoluminescence(PL) spectra of both KCl and KBr crystals doped with Ce exhibit the strong blue emissions of Ce corresponding to 5d(2D)→2F5/2 and 5d(2D)→2F7/2 transitions. The defect centers formed in the Ce3+ doped KBr and KCl. Crystals are studied using the technique of EPR. A dominant TL glow peak at 374, 422 K and KCl:Ce3+ at 466, 475 K is observed in the crystal. EPR studies indicate the presence at two centers at room temperature. Spectral distribution under the thermoluminescence emission(TLE) and optically stimulated emission(OSL) support the idea that defect annihilation process to be due to thermal release of F electron in KBr, KCl:Ce3+ crystals. Both Ce3+ and Ce2+ emissions were observed in the thermoluminescence emission of the crystals.  相似文献   

4.
Optical absorption and luminescence spectra of ytterbium and terbium codoped BaB2O4 (β-BBO and α-BBO) crystals grown in different conditions have been studied. Low-temperature absorption peaks were observed in all samples. Features related to rare earth ions were observed in absorption and luminescence spectra. Absorption and emission in the range 860-1000 nm are caused by 2F5/22F7/2 transitions in Yb3+ ions. Emission peaks at 500, 550, 590 and 630 nm correspond to 5D47F6, 7F5, 7F4, and 7F3 transitions of Tb3+ ions, respectively. The probable reasons of variations in spectroscopic features related to Yb in BBO host are discussed. It has been shown that the replacement of Ва2+ by Yb3+ in the lattice of ВаВ2О4 results in the decrease in the symmetry of oxygen surrounding of Yb3+.  相似文献   

5.
ZrO2:Tb3+ and BaZrO3:Tb3+ powders are prepared by combustion synthesis method and the samples were further heated to 500, 700 and 1000 °C to improve the crystallinity of the materials. The structure and morphology of materials have been examined by X-ray diffraction, Raman spectra and scanning electron microscopy. It is remarkable that all the samples of ZrO2:Tb3+ and BaZrO3:Tb3+ have similar morphology. These images exhibited homogeneous aggregates of varying shapes and sizes, which are composed of a large number of small cuboids and broken cuboids. The cuboids and broken cuboids size of all the samples are less than 0.5 μm. Photoluminescence for both materials increases with increase of temperature and found maximum for the samples heated to 1000 °C with 5 mole% doping of Tb3+ ions. Luminescence is almost double for the zirconia compared to that of barium-zirconate.  相似文献   

6.
Electron spin resonance studies were carried out on Cu2+ doped triglycine calcium bromide. The spectra recorded at room temperature revealed well-resolved hyperfine spectra of63Cu superposed with super-hyperfine lines due to14N nuclei. The spin Hamiltonian parameters are evaluated. It was concluded that the Cu2+ enters the lattice interstitially.  相似文献   

7.
Incorporation of the 2-(2-hydroxyphenyl)-pyridine system into aza-crown systems produces novel ligands for lanthanide ions and can act as sensitising antennae for terbium (III) ions.  相似文献   

8.
Tb3+ activated Sr4Al14O25 phosphors were synthesized by the high temperature solid-state reaction. For the sample, the color of the photoluminescence (PL) was green, but that of the afterglow was blue. The spectral results indicated that the photoluminescence was mainly due to the transitions from 5D4 to the ground energy levels of Tb3+ and obeyed the cross-relaxation mechanism; however, the afterglow was derived from the transitions from 5D3 and independent with the concentration of Tb3+. This difference was attributed to the reason that the energy transfer process of cross-relaxation was halted by the traps during the period of afterglow.  相似文献   

9.
CePO4:Tb nanorods were synthesized via a simple wet-chemical route. The as-synthesized CePO4:Tb nanorods present high photoluminescence efficiency due to an efficient energy transfer form Ce3+ to Tb3+. However, heat treatment at 150 °C in air leads to a significant decrease of photoluminescence. X-ray photoelectron spectroscopy and excitation spectra revealed the oxidation of Ce3+ to Ce4+ in the heat-treatment process, which should be responsible for significant photoluminescence degradation due to the breakage of Ce3+→Tb3+ energy transfer. This conclusion is further supported by atmosphere and size effects of photoluminescence of CePO4:Tb under the heat treatment.  相似文献   

10.
The paper contains results of studies of repeated thermoluminescence of yttrium-aluminum garnet (YAG) crystals (Y3−xLnxAl5O12, x=0, 2) activated by rare earth ions (Pr3+, Nd3+, Tb3+, Dy3+, Ho3+, Er3+) previously exposed to60Co γ-radiation at 77 K and subjected to many cooling-heating cycles. A possible mechanism of repeated thermoluminescence is considered from the viewpoint of a dynamic evolutionary approach. The thermal conductivity of YAG-TR3+ crystals (TR3+: Gd3+, Tb3+, Dy3+, Er3+, Tm3+, and Lu3+) is studied to establish its relation with repeated thermoluminescence. Presented at the National Conference on Molecular Spectroscopy, Samarkand (Uzbekistan), September 25–27, 1996. Samarkand State University, 15, University Blvd., 703004, Samarkand, Republic of Uzbekistan. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 65, No. 1, pp. 137–140, January–February, 1998.  相似文献   

11.
Ion-implanted shallow junctions have been investigated using BE2 (molecular ions) by the anodic oxidation method coupled with a four-point probe technique. BF2 ions were implanted through screen oxide at doses of 3–5 × 1015 ions/cm2 and energies of 25 and 45 keV which is equivalent to 5.6 keV and 10 keV of boron ions. The effect of energy, dose and annealing temperature on shallow junctions is presented in this paper. The shallow junctions in the range of 0.19 μm to 0.47 μm were fabricated.

The effect of fluorine on sheet resistivity of boron implanted silicon at various doses, treated with two-step and three-step annealing, is also presented for comparison in the paper.  相似文献   

12.
Different concentrations of Tb3+ ion-doped gadolinium aluminum garnet (GAG) nanophosphors have been synthesized by solvothermal reaction method and sintered at 1300 °C. The XRD patterns confirm that the GAG phosphors sintered at 1300 °C have a garnet structure with single cubic phase. The calculated crystallite size is about 92 nm. The SEM images of the phosphors show the spherical morphology agglomerated with many small particles. The luminescence properties of these phosphors have been carried out by the emission and excitation spectra along with lifetime measurements. The excitation spectra of GAG:Tb3+ phosphors consist of three broad bands due to the 4f8→4f75d1 transition and some sharp peaks due to the 4f8→4f8 transition. The emission spectra of the phosphors reveal two colors, such as blue due to 5D37FJ transitions and green due to the 5D47FJ transitions. The dynamics of the phosphors have been investigated by decay curves and the cross-relaxation process and is observed at 0.5 mol% Tb3+ concentration.  相似文献   

13.
LiCaBO3:M (M=Eu3+, Sm3+, Tb3+, Ce3+, Dy3+) phosphors were synthesized by a normal solid-state reaction using CaCO3, H3BO3, Li2CO3, Na2CO3, K2CO3, Eu2O3, Sm2O3, Tb4O7, CeO2 and Dy2O3 as starting materials. The emission and excitation spectra were measured by a SHIMADZU RF-540 UV spectrophotometer. And the results show that these phosphors can be excited effectively by near-ultraviolet light-emitting diodes (UVLED), and emit red, green and blue light. Consequently, these phosphors are promising phosphors for white light-emitting diodes (LEDs). Under the condition of doping charge compensation Li+, Na+ and K+, the luminescence intensities of these phosphors were increased.  相似文献   

14.
In this paper we demonstrate the presence of CdBr2 and cadmium aggregates in KBr matrix during Czochralski growth of KBr crystals. The chemical decomposition of CdBr2 due to high temperature of crystallisation and reformation of cadmium bromide seems to be responsible for this effect.  相似文献   

15.
Abstract

Nominally pure and Dy-doped BaF2 crystals were investigated concerning their optical absorption (OA) and thermoluminescence (TL) properties. Peaks at 120—150 and 200°C were observed for a heating rate of 1.7°C/s. The TL response for γ-rays and the TL emission spectra were obtained for these peaks. Except for the purest crystal, all BaF2 crystals produced OA bands before irradiation typical of Ce3+ ions. After irradiation, Dy doped crystals showed bands due to Dy2+ ions. A nominally pure sample gave bands related to Ce2+ ions and photochromic centers of Ce3+ ions. and photochromic centres of Ce3+ ions. The correlation between some OA bands and TL peaks is discussed.  相似文献   

16.
The preparation and upconversion luminescence properties of the Yb3+ and Tb3+ co-doped glass ceramics containing SrF2 nanocrystals were investigated. The formation of SrF2 nanocrystals was confirmed by X-ray diffraction and transmission electron microscopy. Both microstructural and spectral analysis indicated that the Yb3+ and Tb3+ ions were enriched in the precipitated SrF2 nanocrystals, which provide much lower phonon vibration energy than the glass matrix. Due to the efficient cooperative sensitization from Yb3+ to Tb3+ and the relatively low maximum phonon energy of SrF2 nanocrystals, the Yb3+ and Tb3+ co-doped glass ceramics exhibited intense upconversion luminescence, including ultraviolet emission at 382 nm.  相似文献   

17.
BaO-P2O5 glasses mixed with the three metal oxides viz., Al2O3, Ga2O3 and In2O3 doped with Tb2O3 were prepared. The glasses were characterized by X-ray diffraction and differential thermal analysis. Optical absorption and photoluminescence spectra and thermoluminescence (TL) of these glasses have been studied. From the measured intensities of various absorption bands of these glasses, the Judd-Ofelt parameters Ω2, Ω4 and Ω6 have been evaluated and compared with those of other reported glass systems. The Judd-Ofelt theory could successfully be applied to characterize the absorption and luminescence spectra of these glasses. From this theory various radiative properties like transition probability A, branching ratio βr, the radiative lifetime τr and the emission cross-section σE for various emission levels of these glasses have been determined and reported. An attempt has also been made to throw some light on the relationship between the structural modifications and luminescence efficiencies of all the three glasses. The analysis of TL data indicate high non-radiative losses in In2O3 mixed glasses.  相似文献   

18.
The upconverted VUV (185 nm) and UV (230 and 260 nm) luminescence due to 5d-4f radiative transitions in Nd3+ ions doped into a LiYF4 crystal has been obtained under excitation by 351/353 nm radiation from a XeF excimer laser. The maximum upconversion efficiency, defined as the ratio of intensity for 5d-4f luminescence to overall intensity for 5d-4f and 4f-4f luminescence from the 4D3/2 Nd3+ level, has been estimated to be about 70% under optimal focusing conditions for XeF laser radiation. A redistribution of intensity between three main components of 5d-4f Nd3+ luminescence is observed under changing the excitation power density, which favors the most long-wavelength band (260 nm) at higher excitation density level. The effect is interpreted as being due to excited state absorption of radiation emitted. The upconverted VUV and UV luminescence from the high-lying 2F(2)7/2 4f level of Er3+ doped into a LiYF4 crystal has also been obtained under XeF-laser excitation the most intense line being at 280 nm from the spin-allowed transition to the 2H(2)11/2 4f level of Er3+, but the efficiency of upconversion for Er3+ emission is low, less than 5%.  相似文献   

19.
Infrared, Raman, electron absorption, excitation and emission spectra were measured for RbCrxAl1−x(MoO4)2 and CsCrxAl1−x(MoO4)2 crystals (x=0-2%) at the temperatures ranging from 7 to 300 K. A very rich vibronic structure of the emission band was explained and assigned to the respective vibrational modes. One Cr3+ center characterized by 2.35 ms lifetimes for rubidium derivative and 1.3 ms for cesium one at 7 K for the 2E→4A2 transition was identified for both crystals. The local structure of the Cr3+ surrounding is discussed in terms of the spectroscopic results and the crystal field parameters are derived for both materials.  相似文献   

20.
Terbium (Tb3+)/porous silicon (PS) nanocomposites have been formed by impregnation of PS layer in chloride solution of terbium. Complete and uniform penetration of Tb3+ into PS layer is confirmed by Rutherford backscattering spectrometry (RBS) study. Photoluminescence (PL) spectrum shows that Tb3+ ions emit highly in the green region, while the PL band of PS is quenched. The emission of Tb3+ ions depends strongly on the excitation energy and shows a high efficiency at 488 nm corresponding to the maximum absorption band in terbium. A systematic study of the PL versus annealing temperature was performed. It shows an important improvement of the PL intensity for 700°C temperature annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号