首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Current Applied Physics》2010,10(4):1017-1021
ZnSe nanowires have been synthesized by thermal evaporation of ZnSe powders on gold-coated Al2O3(0 0 0 1) substrates and then sheathed with TiO2 by sputtering. Our results show that sheathing Zn nanowires with thin TiO2 layers can significantly enhance the photoluminescence (PL) emission intensity. XPS analysis results suggest that the PL enhancement is attributed to increases in the concentrations of deep levels such as oxygen and titanium interstitials as well as the density of interface states. The PL emission of ZnSe nanowires is also enhanced by thermal annealing. Annealing in an argon atmosphere is more efficient in enhancing the PL emission than annealing in an oxygen atmosphere.  相似文献   

2.
The structure and photoluminescence properties of TiO2-coated ZnS nanowires were investigated. ZnS nanowires were synthesized by thermal evaporation of ZnS powder and then coated with TiO2 by using the metal organic chemical vapor deposition (MOCVD) technique. We performed scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy, and photoluminescence (PL) spectroscopy to characterize the as-synthesized and TiO2-coated ZnS nanowires. TEM and XRD analyses revealed that the ZnS core and the TiO2 coatings had crystalline zinc blende and crystalline anatase structures, respectively. PL measurement at room temperature showed that the as-synthesized ZnS nanowires had two emissions: a blue emission centered in the range from 430 to 440 nm and a green emission at around 515 nm. The green emission was found to be dominant in the ZnS nanowires coated with TiO2 by MOCVD at 350°C for one or more hours, while the blue emission was dominant in the as-synthesized ZnS nanowires. Also the mechanisms of the emissions were discussed.  相似文献   

3.
4.
CuO-core/ SnO2-shell one-dimensional nanostructures have been fabricated by thermal oxidation of a copper foil and then atomic layer deposition of SnO2. The structure and optical properties of the nanostructures have been investigated by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, photoluminescence (PL) spectroscopy, and energy-dispersive X-ray analysis techniques. The nanostructures are found to have the form of nanorods, with the diameter of the CuO cores being in the range from a few tens to a few hundreds of nanometers, the thickness of the SnO2 shells being ~15 nm, and with a length of a few tens of micrometers. The CuO cores and the SnO2 shells of the as-synthesized nanorods have crystalline monoclinic CuO and amorphous SnO2 structures, respectively, but the SnO2 shells are found to crystallize to tetragonal SnO2 on thermal annealing. The PL emission intensity of the CuO nanorods has been slightly increased by SnO2 coating. The PL emission of the SnO2-coated CuO nanorods is somewhat increased and the emission peak position is red-shifted from 550 to 580 nm by annealing in a reducing atmosphere. On the other hand, the PL emission is significantly increased and the emission peak position is shifted from 550 nm further to around 595 nm by annealing in an oxidative atmosphere. In addition, the origins of the PL enhancements in the nanorods by coating and annealing are discussed.  相似文献   

5.
We have fabricated cupric oxide (CuO)-core/silica (SiO x )-shell nanowires by using a two-step process: thermal oxidation and sputtering. The structure and photoluminescence (PL) properties of the core/shell nanowires has been investigated by using scanning electron microscopy, transmission electron microscopy, X-ray diffraction and PL analysis techniques. The CuO cores and the SiO x shells of the as-synthesized nanowires have crystalline monoclinic CuO and amorphous SiO x structures, respectively. The PL emission intensity of the CuO-core/SiO x -shell nanowires has been increased but the emission peak position has not been nearly shifted by annealing in a nitrogen atmosphere, whereas the emission peak position has been shifted a lot from 510 to around 650 nm as well as the emission intensity has been increased by annealing in an oxygen atmosphere. In addition, the origin of the PL enhancement in the CuO-core/SiO x -shell nanowires by annealing and the growth mechanism of the CuO nanowires have been discussed.  相似文献   

6.
We reported an approach, in which we have produced the nano-sized crystalline tin oxide (SnO2) particles with rutile structure. SnO2 nanowires were coated with a shell layer of SiOx via a sputtering method. Transmission electron microscopy and elemental mapping investigations revealed that the nanostructures consisted of a crystalline SnO2 core surrounded by an amorphous SiOx sheath. The annealing effects on the core-shell nanowires were investigated, revealing that the outer surface became rougher by the thermal annealing. For core-shell nanowires, a room-temperature PL measurement with a Gaussian fitting showed yellow, blue, and violet light emission bands, with the relative intensity of the yellow band showing an increase after thermal annealing. Possible PL emission mechanisms are discussed. This study reveals that the sputtering is effective for preparing the shell layers of nanocables.  相似文献   

7.
To investigate the upconversion emission,this paper synthesizes Tm3+ and Yb3+ codoped Y2O3 nanoparticles,and then coats them with TiO2 shells for different coating times.The spectral results of TiO2 coated nanoparticles indicate that upconversion emission intensities have respectively been enhanced 3.2,5.4,and 2.2 times for coating times of 30,60 and 90 min at an excitation power density of 3.21×102 W.cm 2,in comparison with the emission intensity of non-coated nanoparticles.Therefore it can be concluded that the intense upconversion emission of Y2O3:Tm3+,Yb3+ nanoparticles can be achieved by coating the particle surfaces with a shell of specific thickness.  相似文献   

8.
Silica nanowires, grown via the active oxidation of a silicon substrate, have been coated with TiO2 using two coating methods: solution-based deposition of Ti-alkoxides and atomic layer deposition. Analysis of as-deposited and annealed films shows that it is possible to produce stable conformal coatings of either the anatase or rutile phases of TiO2 on nanowires with diameters greater than 100 nm when annealed between 500–600°C and 800–900°C, respectively, with annealing at higher temperatures (1050°C) producing coatings with a highly facetted rutile morphology. The efficacy of the process is shown to depend on nanowire diameter, with nanowires having diameters less than about 100 nm fusing together during solution-based coating and decomposing during TiO2 atomic layer deposition. The use of a suitable buffer layer is shown to be an effective means of minimizing nanowire decomposition. Finally, annealing coated nanowires under active oxidation conditions (1100°C) is shown to be an effective technique for depositing additional conformal SiO x coatings, thereby providing a means of fabricating multi-layered coaxial nanostructures.  相似文献   

9.
We fabricated Co-coated SiOx nanowires and investigated the effects of thermal annealing on their properties. The sputtering process resulted in the formation of a relatively smooth Co shell layer, whereas subsequent thermal annealing generated the Co3O4 phase. The photoluminescence (PL) spectrum was not changed by the Co-coating, whereas the thermal annealing induced new peaks in the yellow and ultraviolet regions. Possible emission mechanisms were discussed. Based on the magnetization measurements of the SiOx-core/Co-shell nanowires, we obtained small and negligible hysteresis loops for the as-fabricated and thermal annealed samples, respectively.  相似文献   

10.
Optical properties and photoluminescence of TiO2 nanowires, synthesized by two-step thermal evaporation process, under different Ar gas flow as carrier have been studied. The gas flow was varied from 50 to 150 sccm in order to find the optimum gas flow to growth TiO2 nanowires. As evidenced by X-ray diffraction patterns, our synthesized nanowires, were found to be crystalline rutile TiO2. Our results indicated a convenient gas flow for controlling diameter size of nanowires was about 100 sccm. In this case, diameters and lengths were, respectively, within the ranges of 40–100 and 400–1800 nm. The experimental data of the reflectance of TiO2 nanowires have been obtained through using spectrometer of wavelength 250–800 nm that has been indicated reflectance decreasing with increasing the gas flow, due to the scattering from the surface of the nanowires and also an increase in voids’ roughness. Under excitation 370 nm, the TiO2 nanowires can emit light peaked at 435 nm. It is believed that peak 435 may be due to free excitons emission.  相似文献   

11.
The optical responses of the 1D porous TiO2/SiO2 complete and defect PCs formed with the ordered porous TiO2 film prepared by using the spin coating and annealing techniques have been systematically studied with FDTD simulation technique. The whole photonic band gap can be easily linearly modulated by the structure parameters, such as thickness, porosity, the filled materials, and so on. The defect layer thickness and porosity only modulate the defect state, and have little effects on the whole PBG. It is more important that the 1D porous TiO2/SiO2 complete and defect PCs have no omnidirectional photonic band gap and defect state.  相似文献   

12.
对注入Ar+后不同晶面取向的蓝宝石晶体在不同退火条件下的光致发光谱进行了分析.分析结果表明:三种晶面取向的蓝宝石样品经Ar+注入后,其光致发光谱中均出现了新的位于506nm处的发光峰;真空和空气气氛下的退火均对样品在506nm处的发光有增强作用,不同晶面取向的样品发光增强程度不同,且发光增强至最大时的退火温度也不同,空气气氛下的退火使样品发光增强程度更为显著.由此可以看出,退火气氛、退火温度和晶面取向均对样品发光峰强度有影响. 关键词: 2O3')" href="#">Al2O3 离子注入 退火 光致发光谱  相似文献   

13.
The effect of different annealing atmosphere on the morphology and photocatalytic activity of mesoporous TiO2 thin films by dip-coating technique is investigated. The annealing temperature and atmosphere causes significant change of the morphology, thermal stability, photoluminescence, and photocatalytic properties of mesoporous TiO2 films. As-prepared mesoporous thin films have an amorphous structure that is transformed to crystalline TiO2 with well-maintained mesoporous structure at 450°C in various annealing atmosphere except that the mesoporous structure is fully destroyed for films annealed in air. Films annealed in N2 show the enhanced UV photodegradation of methyl orange (MO) resulting from the enhanced crystallinity in these films evidenced by XRD and Raman spectra. These findings can be used to tailor the structure and morphology of mesoporous TiO2 films and thus improve their photocatalytic activity for efficient removal of dye effluents in wastewater.  相似文献   

14.
Er 3+-doped TiO 2-SiO 2 powders are prepared by the sol-gel method,and they are characterized by high resolution transmission electron microscopy (HR-TEM),X-ray diffraction (XRD) spectra,and Raman spectra of the samples.It is shown that the TiO 2 nanocrystals are surrounded by an SiO 2 glass matrix.The photoluminescence (PL) spectra are recorded at room temperature.A strong green luminescence and less intense red emission are observed in the samples when they are excited at 325 nm.The intensity of the emission,which is related to the defect states,is strongest at the annealing temperature of 800 C.The PL intensity of Er 3+ ions increases with increasing Ti/Si ratio due to energy transfer between nano-TiO 2 particles and Er 3+ ions.  相似文献   

15.
Structural and optical properties of Si/SiO2 multi-quantum wells (MQW) were investigated by means of Raman scattering and photoluminescence (PL) spectroscopy. The MQW structures were fabricated on a quartz substrate by remote plasma enhanced chemical vapour deposition (RPECVD) of alternating amorphous Si and SiO2 layers. After layer deposition the samples were subjected to heat treatments, i.e. rapid thermal annealing (RTA) and furnace annealing. Distinct PL signatures of confined carriers evidenced formation of Si-nanocrystals (nc-Si) in annealed samples. Analyses of Raman spectra also show presence of nc-Si phase along with amorphous-Si (a-Si) phase in the samples. The strong influence of the annealing parameters on the formation of nc-Si phase suggests broad possibilities in engineering MQW with various optical properties. Interestingly, conversion of the a-Si phase to the nc-Si phase saturates after certain time of furnace annealing. On the other hand, thinner Si layers showed a disproportionately lower crystalline volume fraction. From the obtained results we could assume that an interface strain prevents full crystallization of the Si layers and that the strain is larger for thinner Si layers. The anomalous dependence of nc-Si Raman scattering peak position on deposited layer thickness observed in our experiments also supports the above assumption.  相似文献   

16.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

17.
Herein a novel approach is reported to achieve tunable and high photoluminescence (PL) quantum yield (QY) from the self‐grown spherical TiO2 quantum dots (QDs) on fluorine doped TiO2 (F‐TiO2) flowers, mesoporous in nature, synthesized by a simple solvothermal process. The strong PL emission from F‐TiO2 QDs centered at ≈485 nm is associated with shallow and deep traps, and a record high PL QY of ≈5.76% is measured at room temperature. Size distribution and doping of F‐TiO2 nanocrystals (NCs) are successfully tuned by simply varying the HF concentration during synthesis. During the post‐growth rapid thermal annealing (RTA) under vacuum, the arbitrary shaped F‐TiO2 NCs transform into spherical QDs with smaller sizes and it shows dramatic enhancement (≈163 times) in the PL intensity. Electron spin resonance (ESR) and X‐ray photoelectron spectroscopy (XPS) confirm the high density of oxygen vacancy defects on the surface of TiO2 NCs. Confocal fluorescence microscopy imaging shows bright whitish emission from the F‐TiO2 QDs. Low temperature and time resolved PL studies reveal that the ultrafast radiative recombination in the TiO2 QDs results in highly efficient PL emission. A highly stable, biologically inert, and highly fluorescent TiO2 QDs/flowers without any capping agent demonstrated here is significant for emerging applications in bioimaging, energy, and environmental cleaning.  相似文献   

18.
In this work, ZnO thin films covered by TiO2 nanoparticles (labeled as TiO2-ZnO thin films) were prepared by electron beam evaporation. The influence of annealing temperature on the photoluminescence property of the samples was studied. The structures and surface morphologies of the samples were analyzed by X-ray diffraction (XRD) and atomic force microscope, respectively. The photoluminescence was used to investigate the fluorescent properties of the samples. The measurement results show that the ultraviolet emission of ZnO thin films is largely enhanced after they are covered by TiO2 nanoparticles, while the green emission is suppressed. However, when the annealing temperature is relatively high (≥500 °C), the intensity of ultraviolet emission drops off and a violet emission peak along with a blue emission peak appears. This is probably connected with the atomic interdiffusion between TiO2 nanoparticles and ZnO thin film. Therefore, selecting a suitable annealing temperature is a key factor for obtaining the most efficient ultraviolet emission from TiO2-ZnO thin films.  相似文献   

19.
The oriented ZnO nanorod arrays have been synthesized on a silicon wafer that coated with TiO2 films by aqueous chemical method. The morphologies, phase structure and the photoluminescence (PL) properties of the as-obtained product were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD), transmission electron microscope (TEM) and PL spectrum. The nanorods were about 100 nm in diameter and more than 1 μm in length, which possessed wurtzite structure with a c axis growth direction. The room-temperature PL measurement of the nanorod arrays showed strong ultraviolet emission. The effect of the crystal structure and the thickness of TiO2 films on the morphologies of ZnO nanostructures were investigated. It was found that the rutile TiO2 films were appropriate to the oriented growth of ZnO nanorod arrays in comparison with anatase TiO2 films. Moreover, flakelike ZnO nanostructures were obtained with increasing the thickness of anatase TiO2 films.  相似文献   

20.
Titanium dioxide (TiO2) nanoparticles were modified with poly(methyl methacrylate) (PMMA) to improve the dispersion stability of the nanoparticles in a dielectric medium and to reduce the density mismatch between TiO2 and a dielectric medium for a microcapsule‐type electrophoretic display application. Nanoparticles were coated with PMMA by in situ dispersion polymerization. The PMMA‐coated TiO2 nanoparticles were characterized by fourier transform‐infrared spectrometrey (FT‐IR), electrophoretic light scattering (ELS), and scanning electron microscopy (SEM). Density of PMMA‐coated TiO2 nanoparticles was found to be dependent on the thickness of the PMMA coating on the nanoparticles. An increase of thermal stability of the PMMA layer and the contents of PMMA on the surface of the nanoparticles were measured via thermogravimetric analysis (TGA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号