首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current-voltage (I–V) and electroluminescence (EL) characteristics of organic light-emitting devices with N,N’-Di-[(1-naphthalenyl)-N,N’-diphenyl]-(1,1’-biphenyl)-4,4’-diamine (NPB) of various thicknesses as the hole transport layer, and tris(8-hydroxyquinoline)aluminum (Alq3) selectively doped with 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) as the electron transport layer, have been investigated. A trapped charge induced band bend model is proposed to explain the I–V characteristics. It is suggested that space charge changes the injection barrier and therefore influences the electron injection process in addition to the carrier transport process. Enhanced external quantum efficiency of the devices due to the electron blocking effect of an inserted NPB layer is observed. The optimal thickness of the NPB layer is experimentally determined to be 12±3 nm in doped devices, a value different from that for undoped devices, which is attributed to the electron trap effect of DCM molecules. This is consistent with the result that the proportion of Alq3 luminescence in the total electroluminescence (EL) spectra increases with NPB thickness up to 12 nm under a fixed bias. PACS 72.80.Le; 85.60.Jb  相似文献   

2.
A new multilayer organic light-emitting device (OLED) is fabricated by inserting kalium chloride (KCl) thin layer (1 nm) into hole transport layer (HTL). It has the configuration of ITO/NPB(15 nm)/KCl(1 nm)/NPB(25 nm)/Alq3(60 nm)/KCl(1 nm)/Al. The electroluminescence (EL) result shows that the performance of the novel device has obviously improvement compared with the normal structure (ITO/NPB(40 nm)/Alq3(60 nm)/KCl(1 nm)/Al). The EL and efficiency are about 1.4 and 1.3 times than that of conventional device. The suggested mechanism is that the KCl layer in N,N′-diphenyl-N,N′-bis(1-napthyl–phenyl)-1,1′-biphenyl-4,4′-diamine (NPB) can block the holes of NPB and then balance the holes and electrons. The better recombination of holes and electrons is beneficial to the enhancing properties of OLED.  相似文献   

3.
姜燕  杨盛谊  张秀龙  滕枫  徐征  侯延冰 《物理学报》2006,55(9):4860-4864
以电子束蒸发的方法制备硒化锌(ZnSe)薄膜,研究了基于ZnSe的有机-无机异质结电致发光器件.在双层器件ITO/ZnSe(50nm)/Alq3(12nm)/Al中看到了峰值位于578nm的ZnSe电致发光,却很难得到单层器件ITO/ZnSe(50—120nm)/Al的电致发光;在此基础上进一步引入有机空穴传输层(HTL),通过改变器件的结构,讨论了ZnSe对有机-无机异质结器件ITO/HTL/ZnSe/Alq3/Al电致发光特性的影响.其电致发光光谱的研究结果证实了ZnSe在器件中的作用:ZnSe既起传输电子的作用,也起到传输空穴的作用,还作为发光层.并对ZnSe的发光机理进行了讨论. 关键词: 硒化锌 有机-无机异质结 电致发光 空穴传输层  相似文献   

4.
We used N,N′-bis-(1-naphthyl)-N,N′-1-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB), 4,4′-N,N′-dicarbazole-biphenyl (CBP) and tris(8-hydroxyquinoline) aluminum (Alq3) to fabricate tri-layer electroluminescent (EL) device (device structure: ITO/NPB/CBP/Alq3/Al). In photoluminescence (PL) spectra of this device, the emission from NPB shifted to shorter wavelength accompanying with the decrease of its emission intensity and moreover the emission intensity of Alq3 increased relatively with the increase of reverse bias voltage. The blue-shifted emission and the decrease in emission intensity of NPB were attributed to the polarization and dissociation of NPB excitons under reverse bias voltage. The increase of emission intensity of Alq3 benefited from the recombination of electrons (produced by the dissociation of NPB exciton) and holes (injected from the Al cathode).  相似文献   

5.
A novel structure of organic light-emitting diode was fabricated by inserting a molybdenum trioxide (MoO3) layer into the interface of hole injection layer copper phthalocyanine (CuPc) and hole transport layer N,N′-diphenyl-N,N′-bis(1-napthyl-phenyl)-1,1′-biphenyl-4,4′-diamine (NPB). It has the configuration of ITO/CuPc(10 nm)/MoO3(3 nm)/NPB(30 nm)/ tris-(8-hydroxyquinoline) aluminum (Alq3)(60 nm)/LiF(0.5 nm)/Al. The current density-voltage-luminance (J-V-L) performances show that this structure is beneficial to the reduction of driving voltage and the enhancement of luminance. The highest luminance increased by more than 40% compared to the device without hole injection layer. And the driving voltage was decreased obviously. The improvement is ascribed to the step barrier theory, which comes from the tunnel theory. The power efficiency was also enhanced with this novel device structure. Finally, “hole-only” devices were fabricated to verify the enhancement of hole injection and transport properties of this structure.  相似文献   

6.
Novel types of multilayer color-tunable organic light-emitting devices (OLEDs) with the structure of indium tin oxide (ITO)/N,N′-bis-(1-naphthyl)-N,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB)/aluminum (III)bis(2-methyl-8-quinolinato)4-phenylphenolato (BAlq)/tris-(8-hydroxyquinolate)-aluminum (Alq3)/Mg:Ag were fabricated. By inserting a thin layer with different thickness of a second NPB layer at the heterojunction interface of BAlq/Alq3, the emission zone of devices shifted greatly and optoelectronic characteristics underwent large variation. Although BAlq was reported as a very good hole-blocking and blue-light-emission material, results of measurements in this paper suggested that a certain thickness of NPB layer between BAlq and Alq3 plays an important role to modify device characteristics, which can act as recombination-controlling layer in the multilayer devices. It also provides a simple way to fabricate color-tunable OLEDs by just changing the thickness of this “recombination-controlling” layer rather than doping by co-evaporation.  相似文献   

7.
Co50Fe50-xSix合金的结构相变和磁性   总被引:1,自引:0,他引:1       下载免费PDF全文
汪津  赵毅  谢文法  段羽  陈平  刘式墉 《物理学报》2011,60(10):107203-107203
利用实验测量和理论计算相结合的方法,研究了介于B2结构CoFe低有序合金和L21结构Co2FeSi高有序合金之间的Co50Fe50-xSix合金的结构相变、磁相变、分子磁矩和居里温度.采用考虑Coulomb相互作用的广义梯度近似(GGA+U)方法计算了合金的能带结构.研究发现,合金出现较强的原子有序倾向,表现出较强的共价成相作用.合金的晶格常数、磁矩、居里温度随Si含量的增加而线性地降低,极限成分Co2FeSi合金的分子磁矩和居里温度分别达到5.92μB和777 ℃.原子尺寸效应导致合金晶格发生变化,但并未成为居里温度和分子磁矩变化的主导因素.分子磁矩的变化符合Slater-Pauling原理,但发现原子磁矩的变化并非线性,据此提出了共价成相对磁性影响的观点.采用Stearns理论解释了居里温度的变化趋势,排除了原子间距对居里温度的主导影响作用.能带计算的结果还表明,Co2FeSi作为半金属材料并非十分完美,可能在实际应用中会出现自旋极化率降低的问题.发现该系列合金的结构相变和磁相变随着成分的变化聚集在窄小的成分和温度范围内. 关键词: 磁性 Heusler合金 结构相变  相似文献   

8.
The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'-biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency.  相似文献   

9.
We have investigated the emission properties of dopants 5,6,11,12-tetraphenylnapthacene (rubrene) and 3-(2′-benzothiazolyl)-7-diethylaminocoumarin (coumarin 6) as well as co-doping of these two dopants in tris (8-hydroxyquinolinato) aluminum (Alq3) films in double-layer organic light emitting diodes (OLEDs). We varied the rubrene (Rb) doping concentration in Alq3:Rb films up to 10 wt%. The maximum luminescence efficiency of ∼6.5 cd/A was observed for Rb doping concentration of ∼0.7 wt% in Alq3:Rb film, which was nearly double efficiency compared to pure Alq3 device. The co-doping of dopants of C-6 and Rb in the ratio of 1:1 and 1:2 in Alq3 films reduced the bias voltage compared to pure Alq3 and Alq3:C-6 devices for the same current density. The maximum luminescence efficiency was improved to ∼7 cd/A in Alq3:{C-6:Rb(1:2)} film OLED. The direct recombination of holes and electrons in the dopant molecules may be responsible for the improvement of the luminescence efficiency. We also observed the shifting of photoluminescence (PL) and electroluminescence (EL) peaks position from ∼515 to ∼562 nm by co-doping of Rb and C-6 in Alq3.  相似文献   

10.
We have demonstrated efficient organic electroluminescent (EL) devices with well Structure as the emitting layer. The well structure fabricated by alternating deposition of constituent tris-(8-hydroxyquinoline) aluminum (Alq3) and 4,4-N,N-dicarbazole-biphenyl (CBP) layers improved the current efficiency. The enhanced efficiency can be attributed to the strong accumulation of electrons and holes in the thin Alq3 layer, which leads to an increase of the exciton formation and exciton recombination probability. The single well device exhibits the highest current efficiency of 4.1 cd/A,which is more than twice than that of the conventional heterostructure device. It is an effective and simple way to improve the efficiency of EL devices by utilizing well structure as the emitting layer with proper well number.  相似文献   

11.
Driving voltage of organic light-emitting diode (OLED) is lowered by employing molybdenum trioxide (MoO3)/N, N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine (NPB) multiple quantum well (MQW) structure in hole transport layer. For the device with double quantum well (DQW) structure of ITO/ [MoO3 (2.5 nm)/NPB (20 nm)]2/Alq3(50 nm)/LiF (0.8 nm)/Al (120 nm)], the turn-on voltage is reduced to 2.8 V, which is lowered by 0.4 V compared with that of the control device (without MQW structures), the driving voltage is 5.6 V, which is reduced by 1 V compared with that of the control device at the 1000 cd/m2. In this work, the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure, which is attributed not only to the reducing energy barrier between ITO and NPB, but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.  相似文献   

12.
富勒烯掺杂NPB空穴传输层的有机电致发光器件   总被引:1,自引:0,他引:1       下载免费PDF全文
牛连斌  关云霞 《物理学报》2009,58(7):4931-4935
报道了不同掺杂浓度NPB:C60(富勒烯)作为空穴传输层对有机电致发光器件性能的影响.采用真空热蒸镀方法,制作了ITO/ NPB:C60x % )/Alq3/LiF/Mg:Ag结构的四种有机电致发光器件.当NPB:C60的掺杂浓度是15%时,器件的启亮电压是4 V,最大亮度是11000 cd/m2.然而,当NPB:C60的掺杂浓度是20%时,器件的最大亮度降  相似文献   

13.
The multilayer organic light-emitting diodes (OLEDs) have been fabricated with a thin alkaline metal chloride layer inserted inside an electron transport layer (ETL), tris (8-hydroxyquinoline) aluminum (Alq3). The alkaline metal chloride layer was inserted inside 60 nm Alq3 at d=0, 10, 20 and 30 nm positions (d is the distance of the interlayer away from the Al cathode). The devices, with alkaline metal chlorides inserted at the Alq3/Al interface, showed electron injection and electroluminescence (EL) intensity improvements. When the alkaline metal chlorides were inserted inside the Alq3 layer at 10, 20 or 30 nm position apart from the Al cathode, both EL intensity and efficiency were enhanced for the devices with a thin potassium chloride (KCl) or rubidium chloride (RbCl) layer. On the contrary, the improvements were not observed for the OLEDs with a thin sodium chloride (NaCl) layer. A proposed insulator buffer layer model is employed to explain these characteristics of the devices.  相似文献   

14.
采用瞬态光电压技术研究了NPB和Alq3界面激子拆分过程和拆分机理.对NPB和Alq3组成双层结构的样品,在脉冲355nm激光照射下,测量样品的瞬态光电压信号,通过对不同结构的和有界面激子阻挡层的样品的瞬态光电压分析,并排除了ITO/有机外界面对激子拆分的影响,得出了NPB/ Alq3界面激子拆分机理是向Alq3 注入电子,向NPB注入空穴. 关键词: 激子拆分 界面 瞬态光电压  相似文献   

15.
利用氧化钼(MoOx)作为p型掺杂剂,以掺杂层4,4'-bis(carbazol-9-yl)biphenyl(CBP):MoOx作为空穴注入层,制备了一种结构为ITO/MoOx/CBP:MoOx/CBP/CBP:tris(2-phenylpyridine)iridium(III)(Ir(ppy)3)/4,7-diphenyl-1,10-phenanthroline(Bphen)/LiF/Al的有机电致发光器件.器件中CBP同时作为空穴注入层、空穴传输层以及发光层母体材料,这种结构具有结构简单同时能有效降低空穴注入势垒等优点.研究发现,随着空穴注入层厚度的增加,器件的电流密度增加,表明p型掺杂层的引入能够有效增强空穴的注入;通过优化器件空穴注入层与空穴传输层厚度,器件性能有所提高,最大电流效率为29.8 cd/A,可以认为合理的优化空穴注入层和空穴传输层的厚度,使载流子在发光层中的分布更加平衡是提高器件发光效率的主要原因.值得指出的是,从电流效率最大值到亮度为 20 000 cd/m2时,优化后器件的效率衰减仅为17.7%,而常规器件的效率衰减则为62.1%,优化后器件效率衰减现象得到了明显的改善.分析认为优化后的器件中未掺杂的CBP有助于展宽激子形成区宽度,进而减弱了三线态-三线态湮灭、三线态-极化子淬灭现象,激子形成区的展宽是改善效率衰减的主要原因.  相似文献   

16.
Tris(8-hydroxyquinolato) aluminum (Alq3)-based organic light-emitting diodes were fabricated with or without using a hole transport layer (HTL). As a conventional device, the ITO/Alq3/Mg-Ag device yielded a green-light emission with a single peak at 525 nm in the electroluminescence (EL) spectrum. In contrast, two sub-peaks were observed in the EL spectrum of some ITO/HTL/Alq3/Mg-Ag devices. This difference was tentatively explained by comparing EL with the photoluminescence (PL) spectrum reported in the literature.  相似文献   

17.
刘荣  张勇  雷衍连  陈平  张巧明  熊祖洪 《物理学报》2010,59(6):4283-4289
制备了有LiF插层的有机发光二极管,以八羟基喹啉铝(Alq3)作为电子传输层,N, N′-二苯基-N, N′-二(1-萘基)-1,1′-联苯-4,4′-二胺(NPB)作为空穴传输层.通过改变Alq3与NPB间LiF插层的厚度,研究了不同温度下器件的光电特性及电致发光的磁场效应.测量结果表明:LiF插层可以影响器件内部载流子的输运和激发态的形成.较厚的插层阻碍了空穴的传输,使器件的电流效率变低.但实验中发现, 关键词: LiF插层结构 磁场效应 三重态激子  相似文献   

18.
Transparent indium-tin-oxide (ITO) anode surface was modified using O3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N,N′-Diphenyl-N,N′-bis(3-methylphenyl)-1,1′-diphenyl-4,4′-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer.  相似文献   

19.
Near-infrared (NIR) organic light-emitting devices (OLEDs) are demonstrated by employing erbium fluoride (ErF3)-doped tris-(8-hydroxyquinoline) aluminum (Alq3) as the emitting layer. The device structure is ITO/N,N′-di-1-naphthyl-N,N′-diphenylbenzidine (NPB)/Alq3: ErF3/2,2′,2″-(1,3,5-phenylene)tris(1-phenyl-1H-benzimidazole) (TPBI)/Alq3/Al. Room-temperature electroluminescence around 1530 nm is observed due to the 4I13/24I15/2 transition of Er3+. Full width at half maximum (FWHM) of the electroluminescent (EL) spectrum is ~50 nm. NIR EL intensity from the ErF3-based device is ~4 times higher than that of Er(DBM)3Phen-based device at the same current. Alq3–ErF3 composite films are investigated by the measurements of X-ray diffraction (XRD), absorption, photoluminescence (PL) and PL decay time. Electron-only devices are also fabricated. The results indicate that energy transfer mechanism and charge trapping mechanism coexist in the NIR EL process.  相似文献   

20.
制备了ITO/NPB/LiF/Alq3/LiF/Al的器件,测量了该组器件效率和亮度的磁效应.结果表明,在50 mT磁场中,当LiF缓冲层厚度为0.8 nm时,器件的效率最大增加了12.4%,磁致亮度最大变化率17%.同时,制备的磷光器件ITO/NPB/LiF/CBP:6 wt% Ir(ppy)3/BCP/Alq3/ LiF/Al,在50mT磁场作用下,当LiF缓冲层的厚度为0.8 nm时,器件的效率最大增加12.1%.在Alq3 关键词: 有机发光 磁场 效率 磁致亮度  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号