首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
肖思国  阳效良  丁建文 《物理学报》2009,58(10):6858-6862
制备了微晶体尺寸大约在10—12 nm范围内的Er3+,Yb3+共掺杂透明氟硅铅酸盐微晶玻璃.相同功率激发下,纳米微晶玻璃中Er3+离子的2H11/2,4S3/24I15/2的绿色上转换荧光和4F9/2关键词: 3+')" href="#">Er3+ 3+')" href="#">Yb3+ 能量传递 纳米微晶玻璃  相似文献   

2.
New near-infrared luminescent, monoclinic CaAl2O4:Er3+ phosphor was prepared by using the combustion route at furnace temperatures as low as 500 °C in a few minutes. Combustion synthesized phosphor has been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive analysis of X-ray (EDAX) mapping studies. The luminescence spectra of Er3+-doped calcium aluminate were studied at UV (380 nm), vis (488 nm) and IR (980 nm) excitation. Upon UV and vis excitation, the CaAl2O4:Er3+ phosphor exhibits emission bands at ~523 nm and at ~547 nm, corresponding to transitions from the 2H11/2 and 4S3/2 erbium levels to the 4I15/2 ground state. A strong luminescence at 1.55 μm in the infrared (IR) region due to 4I13/24I15/2 transition has been observed in CaAl2O4:Er3+ phosphor upon 980 nm CW pumping. In the spectrum of IR-excited up-conversion luminescence, green (~523 and ~547 nm) and red (662 nm) luminescence bands were present, the latter associated with the 4F9/24I15/2 transitions of Er3+ ions. Both excited state absorption and energy transfer may be proposed as processes responsible for the population of the 4S3/2 and 4F9/2 erbium levels upon IR excitation. The mechanisms responsible for the up-conversion luminescence are discussed.  相似文献   

3.
We have prepared Er3+/Yb3+ co-doped transparent phosphate glass ceramics by the high-temperature melting technique, and demonstrated the influence of energy acceptors Ce3+ ions on the up-conversion and 1.54 μm emission properties of Er3+. The energy transfer mechanism is discussed based on the energy matching and the energy level structure. The phonon-assisted energy transfer between Er3+ and Ce3+ favors population feeding from the 4I11/2 to the 4I13/2 level, and therefore drastically decreases the up-conversion emission intensity of Er3+. Meanwhile, 1.54 μm fluorescence enhances greatly with the introduction of Ce3+ ions at the proper concentration.  相似文献   

4.
Erbium-doped lead silicate glass has been investigated for near-infrared emission and up-conversion applications. Near-infrared emission due to 4I13/2  4I15/2 transition of Er3+ is relatively broad (70.5 nm) and long-lived (3.7 ms). Also, up-conversion luminescence spectra of Er3+ ions in lead silicate glass have been examined as a function of temperature. The relative intensities of luminescence bands corresponding to 2H11/2  4I15/2 and 4S3/2  4I15/2 transitions of Er3+ were determined with temperature. The fluorescence intensity ratio and temperature sensitivity were calculated. The maximum sensitivity for Er3+ doped lead silicate glass is close to 26.4 × 10?4 K?1 at T = 590 K.  相似文献   

5.
The effect of the defects due to the charge compensation obtained with the yttrium co-doping to the ZrO2:Yb3+,Er3+ up-converting phosphors was studied. The materials were prepared with the combustion method. The materials purity was analyzed with the FT-IR spectroscopy. The crystal structure was studied with the X-ray powder diffraction and the crystallite sizes were estimated with the Scherrer formula. Up-conversion luminescence was excited at room temperature with an IR-laser at 970 nm. The up-conversion luminescence spectra showed red (650-685 nm) and green emission (520-560 nm) due to the 4F9/24I15/2 and (2H11/2,4S3/2)→4I15/2 transitions of Er3+, respectively. Persistent up-conversion luminescence was observed both in the Yb3+,Er3+ and Y3+,Yb3+,Er3+ doped materials.  相似文献   

6.
Er3+-doped KCaY(VO4)2 microcrystalline samples were synthesized using a high temperature solid-state reaction technique. Spectroscopic properties of Er3+: KCaY(VO4)2 are studied and the nature of emissions is discussed. A strong green and infrared luminescence were observed under excitation at 314 nm in the O2−→V5+ charge-transfer transitions and direct excitation of Er3+ ions at 435 nm. A strong emission lines in the blue region are due to the transitions of VO43− ions have been observed at 77 K. The Judd-Ofelt parametrization scheme has been applied to the analysis of the room temperature absorption spectra in order to evaluate the intensity parameters, the branching ratios and the radiative lifetimes of the 4I13/2, 4I11/2, 4F9/2 and 4S3/2 emitting levels. The effective cross-section has been calculated for the 4I13/24I15/2 transition, indicating that the title compounds is a promising active medium for application in the three-level laser system. The up-conversion emission in Er3+: KCaY(VO4)2 was investigated at 300 K. The decay profiles of the Stokes and anti-Stokes emissions were measured and the mechanism of up-conversion luminescence is discussed.  相似文献   

7.
Tellurite glasses (TeO2–ZnO–Nb2O5) mono-doped Er3+ and co-doped Er3+/Ce3+ have been prepared using the melt-quenching technique. To evaluate the effect of Ce3+ on the structural, thermal stability of glass hosts and fluorescence properties of Er3+, X-ray diffraction patterns, Ftir spectra, differential scanning calorimeter curves, absorption spectra, fluorescence emission spectra, fluorescence lifetimes, up-conversion emission spectra of glass samples were measured and investigated. Using Judd–Ofelt theory, we calculated intensity parameters (Ω2, Ω4 and Ω6), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors and the quantum yield of luminescence for 4I13/2 → 4I15/2 transition. The co-doping with Ce3+ was effective on the suppression of up-conversion emission of Er3+ owing to the phonon-assisted energy transfer: Er3+:4I11/2 + Ce3+:2F5/2 → Er3+:4I13/2 + Ce3+:2F7/2 which contributed the effective enhancement of 1.53 µm fluorescence emission. The change in optical properties with the addition of Ce3+ ions have been discussed and compared with other glasses. Using the Mc Cumber method for the 4I13/2 → 4I15/2 transition, absorption cross-section, calculated emission cross-section, and gain cross-section values support that TZNEr1Ce1 glass is a potential material for developing broad-band and high-gain erbium-doped fiber amplifiers applied for 1.53 µm.  相似文献   

8.
Up-conversion luminescence and energy transfer (ET) processes in Nd3+-Yb3+-Er3+ triply doped TeO2-ZnO-Na2O glasses have been studied under 800 nm excitation. Intense green up-conversion emissions around 549 nm, which can be attributed to the Er3+: 4S3/24I15/2 transition, are observed in triply doped samples. In contrast, the green emissions are hardly observed in Er3+ singly doped and Er3+-Yb3+ codoped samples under the same condition. Up-conversion luminescence intensity exhibits dependence of Yb2O3-concentration and Nd2O3-concentration. Up-conversion mechanism in the triply doped glasses under 800 nm pump is discussed by analyzing the ET among Nd3+, Yb3+ and Er3+. And a possible up-conversion mechanism based on sequential ET from Nd3+ to Er3+ through Yb3+ is proposed for green and red up-conversion emission processes.  相似文献   

9.
Erbium-doped tin dioxide (SnO2:Er3+) was obtained by the sol–gel method. Spectroscopic properties of the SnO2:Er3+ are analyzed from the Judd–Ofelt (JO) theory. The JO model has been applied to absorption intensities of Er3+ (4f11) transitions to establish the so-called Judd–Ofelt intensity parameters: Ω2, Ω4, and Ω6. With the weak spectroscopic quality factors Ω46, we expect a relatively prominent infrared laser emission. The intensity parameters are used to determine the spontaneous emission probabilities of some relevant transitions, the branching ratios, and the radiative lifetimes of several excited states of Er3+. The emission cross section (1.31×10-20 cm2) is evaluated at 1.54 μm and was found to be relatively high compared to that of erbium in other systems. Efficient green and red up-conversion luminescence were observed, at room temperature, using a 798-nm excitation wavelength. The green up-conversion emission is mainly due to the excited state absorption from 4 I 11/2, which populates the 4 F 3/2,5/2 states. The red up-conversion emission is due to the energy transfer process described by Er3+ (4I13/2)+Er3+(4I11/2)→Er3+(4F9/2)+Er3+ (4 I 15/2) and the cross-relaxation process. The efficient visible up-conversion and infrared luminescence indicate that Er3+-doped sol–gel SnO2 is a promising laser and amplifier material. PACS 71.20.Eh; 74.25.Gz; 78.55.-m  相似文献   

10.
The up-converting ZrO2:Yb3+,Er3+ nanomaterials were prepared with the combustion and sol–gel methods. FT-IR spectroscopy was used for analyzing the impurities. The crystal structures were characterized with X-ray powder diffraction and the mean crystallite sizes were estimated with the Scherrer formula. Up-conversion luminescence measurements were made at room temperature with IR-laser excitation at 977 nm. The IR spectra revealed the conventional and OH impurities for the combustion synthesis products. The structure of the ZrO2:Yb3+, Er3+ nanomaterials was cubic except for the minor monoclinic and tetragonal impurities obtained with the sol–gel method. The materials showed red (650–700 nm) and green (520–560 nm) up-conversion luminescence due to the 4F9/24I15/2 and (2H11/2, 4S3/2)→4I15/2 transitions of Er3+, respectively. The products obtained with the combustion synthesis exhibited the most intense luminescence intensity and showed considerable afterglow.  相似文献   

11.
The 75TeO2–20ZnO–4Na2CO3–1Er2O3 (in molar ratio) glass system was prepared by the conventional melt-quenching method. As such, the samples prepared were investigated by differential scanning calorimetry (DSC), X-ray diffractrometry (XRD), Raman spectroscopy and infrared luminescence. DSC analyses were carried out on our glass at different heating rates between 5 and 20 °C/min. The result of the annealing temperature on the spectroscopic properties of Er3+ in tellurite glasses was discussed. The activation energy, for surface crystallization, was determined graphically from a Kissinger-type plot and had a value about 897.2 kJ/mol. Crystalline phases for both α-TeO2, γ-TeO2 and Zn2Te3O8 system were determined by the XRD method and were confirmed by Raman spectroscopy characterizations after heat treatment. The effect of heat treatment on absorption spectra and luminescence properties in the tellurite glass was also investigated. With heat treatment, the ultraviolet absorption edge presented a redshift. As a result, the Judd–Ofelt (J–O) intensity parameters (Ω2, Ω4, Ω6) were determined. The spontaneous emission probabilities of some relevant transitions, the branching ratio and the radiative lifetimes of several excited states of Er3+ were predicted using intensity J–O parameters. The near infrared emission that corresponds to Er3+: 4I13/24I15/2 can be significantly enhanced after heat treatment. Notably, it is found that the luminescence lifetime in the present system is much longer than that in most other glasses and glass ceramics. A comparative study on luminescence performance suggests that the obtained glass ceramic is a promising material for Er3+ doped fiber amplifiers.  相似文献   

12.
谭鑫鑫  吕树臣 《光子学报》2014,39(7):1169-1175
采用共沉淀法制备了纳米晶ZrO2-Al2O3∶Er3+发光粉体.所制备的粉体室温下具有Er3+离子特征荧光发射,主发射在绿光,其中位于547 nm、560 nm的绿光最强,并得出稀土离子与基质之间有能量传递.对不同煅烧温度下的样品研究表明:因不同温度下所制得的样品晶相不同.研究了纳米晶ZrO2-Al2O3∶Er3+及ZrO2-Al2O3∶Er3+/Yb3+的上转换发光,并分析了上转换的跃迁机制.发现ZrO2-Al2O3∶Er3+的绿光为双光子过程,而ZrO2-Al2O3∶Er3+、Yb3+的上转换光谱中,红光和绿光也为双光子过程,而极弱的蓝光为三光子过程.讨论了Er3+的浓度猝灭现象.最适宜掺杂浓度的原子分数为2%(Er3+/Zr4+).  相似文献   

13.
The Er3+ codoped with CdS nanoparticles in sol-gel glass with an average particle size of about 10 nm have been synthesized by sol-gel method. The green and red up-conversion emissions centered at about 534, 560 and 680 nm, corresponding to the 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, respectively; were detected by a 800 nm excitation. The two-photon absorption process is involved in the green and red up-conversion emissions.  相似文献   

14.
Er,Yb:YAG微晶玻璃发光特性的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
高温熔制Er3+,Yb3+离子掺杂CaO-Y2O3-Al2O3-SiO2系统玻璃,并进行微晶化处理,研究了微晶玻璃中Er3+离子的发光及上转换发光特性,分析了微晶玻璃上转换发光机理.结果表明:原始玻璃经热处理得到了Er,Yb:YAG微晶玻璃,微晶玻璃中Er3+离子在室温下4I13/24I15/2跃迁产生横盖1450—1650nm区间的超宽带荧光,荧光半高宽达180nm,这可能由于YAG微晶相中Er3+离子与玻璃相中残留Er3+离子的共同发光;Er3+与Yb3+离子局域基质声子能量的降低使微晶玻璃Er3+离子上转换发光强度与原始玻璃相比显著提高,绿光、红光上转换荧光强度比玻璃样品分别增强约7和3倍;微晶化后Er3+,Yb3+离子局域环境发生变化也导致微晶玻璃中Er3+离子绿光、红光上转换发光相对强度发生变化. 关键词: 铒 镱:钇铝石榴石 微晶玻璃 荧光光谱  相似文献   

15.
NaYF4:Yb3+, Er3+ nanoparticles were successfully prepared by a polyol process using diethyleneglycol (DEG) as solvent. After being functionalized with SiO2–NH2 layer, these NaYF4:Yb3+, Er3+ nanoparticles can conjugate with activated avidin molecules (activated by the oxidation of the oligosaccharide chain). The as-formed NaYF4:Yb3+, Er3+ nanoparticles, NaYF4:Yb3+, Er3+ nanoparticles functionalized with amino groups, avidin conjugated amino-functionalized NaYF4:Yb3+, Er3+ nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), Fourier transform infrared (FT-IR), UV/Vis absorption spectra, and up-conversion luminescence spectra, respectively. The biofunctionalization of the NaYF4:Yb3+, Er3+ nanoparticles has less effect on their luminescence properties, i.e., they still show the up-conversion emission (from Er3+, with 4S3/2 → 4I15/2 at ~540 nm and 4F9/2 → 4I15/2 at ~653 nm), indicative of the great potential for these NaYF4:Yb3+, Er3+ nanoparticles to be used as fluorescence probes for biological system.  相似文献   

16.
Yb3+/Er3+ co-doped Gd6MoO12 and Yb3+/Er3+/Li+ tri-doped Gd6MoO12 phosphors were prepared by adjusting the annealing temperature via the high temperature solid-state method. Under the excitation of 980 nm semiconductor, the upconversion luminescence properties were investigated and discussed. In the experimental process, we get the optimum Yb3+ concentration and the concentration quench effect will happen while the concentration extends the given region. According to the Yb3+ concentration quenching effects, the critical distance between Yb3+ ions had been calculated. The measured UC luminescence exhibited a strong red emission near 660 nm and green emission at 530 nm and 550 nm, which are due to the transitions of Er3+(4F9/2, 2H11/2, 4S3/2)  Er3+(4I15/2). Then the effect of excitation power density in different regions on the upconversion mechanisms was investigated and the calculated results demonstrate that the green and red upconversion is a two-photon process. A possible mechanism was discussed. After Li+ ions mixing, the upconversion emission enhanced largely, and the optimum Li+ concentration was obtained while fixed the Yb3+ and Er3+ on the above optimum concentration. This enhancement owns to the decrease of the local symmetry around Er3+ after Li+ ions doping into the system. This result indicates that Li+ is a promising candidate for improving luminescence in some case.  相似文献   

17.
A transparent Er3+–Tm3+–Yb3+ tri-doped oxyfluoride glass ceramics containing LiYF4 nanocrystals were prepared. Under 980 nm laser diode (LD) pumping, intensive red, green and blue upconversion (UC) was obtained. The blue, green, and red UC radiations correspond to the transitions 1G43H6 of Tm3+, 2H11/2/4S3/24I15/2, and 4F9/24I15/2 of Er3+ ions, respectively. This is similar to that in Tm3+–Yb3+ and/or Er3+–Yb3+ co-doped glass ceramics. However, the blue UC radiations of the Er3+–Yb3+ co-doped glass ceramics is two-photon process due to cooperative energy transfer. The UC mechanisms were proposed based on spectral, kinetic, and pump power dependence analyses.  相似文献   

18.
The Er3+ -Yb3+ codoped in Li2O content tungsten -tellurite (TWL) transparent glasses are synthesized and measured the absorption, Raman and upconversion luminescence (UPL) spectra. At room temperature intense green emission peak at 560 nm ( 4S3/24I15/2) and red emission peak at 670 nm ( 4F9/24I15/2) of Er3+ observed even at minimum 86 mW pumping power of infrared 980 nm excitation. For structure of the TWL glass, Raman spectrum result revealed that an important role of WO3 in the formation of glass network linkage with Li2O. Under this influence estimated lifetime of the 4I11/2 of Er3+ was 1.89 μs and due to lower phonon energy of the glass produce strong upconversion signal. The effect of Er2O3 concentration on emission intensity result indicated that green emission intensity initially increase in compare to red emission. Under the 980 nm pump power variation measured the relatively increases the red emission to the green emission intensity and analyze the possible upconversion mechanism and process.  相似文献   

19.
This paper reports on the comparative investigation of nanocrystal structure and luminescence properties of Er3+/Yb3+-codoped gadolinium molybdate nanocrystals Gd2(MoO4)3 and Gd2MoO6 synthesized by the Pechini method with citric acid and ethylene glycol. Their crystallization, structure transformation, and morphologies have been investigated by X-ray diffraction, thermogravimetric/differential scanning calorimetry, and transmission electron microscopy. It is noticed that Er3+/Yb3+-codoped monoclinic Gd2(MoO4)3 nanocrystals have shown an intense upconversion through a sintering of the organic complex precursor at 600°C. Furthermore, it transforms to orthorhombic Gd2(MoO4)3 when the precursor is sintered at 900°C. In counterpart of monoclinic Gd2MoO6, however, the monoclinic structure remains unchanged when the precursor is sintered at a temperature ranging from 600°C to 900°C. Intense visible emissions of Er3+ attributed to the transitions of 2H11/2, 4S3/24I15/2 at 520 and 550 nm, and 4F9/24I15/2 at 650 nm have been observed upon an excitation with a UV source and a 980 nm laser diode, and the involved mechanisms have been explained. It is quite interesting to observe obvious differences both in the excitation and the upconversion emission spectra of Er3+/Yb3+-codoped Gd2(MoO4)3 respectively with monoclinic and orthorhombic structure. The quadratic dependence of fluorescence on excitation laser power has confirmed that two-photons contribute to upconversion of the green–red emissions.  相似文献   

20.
徐伟  李成仁  曹保胜  董斌 《中国物理 B》2010,19(12):127804-127804
Yb3+:Er3+co-doped oxy-fluoride ceramics glass has been prepared.The mechanism of up-conversion emissions about Er3+was discussed,and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated.The results show that the sensitivity of this sample reaches its maximum value,about 0.0047 K 1,when the temperature is 383 K,indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号