首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Er/Tm/Yb codoped Y2O3 nanocrystals and Er/Tm/Yb/Li codoped Y2O3 nanocrystals have been synthesized by sol-gel method, bright white light emission has been observed at 976 nm excitation. The blue, green, and red emissions, respectively, arise from the transitions 1G4 → 3H6 of Tm3+, 2H11/2/4S3/2 → 4I15/2, and 4F9/2 → 4I15/2 of Er3+ ion. Moreover, after doping Li+ ions into Er/Tm/Yb codoped Y2O3 nanocrystals, the white light emission increase greatly. CIE coordinate of Er/Tm/Yb/Li codoped Y2O3 nanocrystals is X = 0.32 and Y = 0.36 at 10 W/cm2 excitation, which is very close to the standard equal energy white light illuminate (X = 0.33, Y = 0.33).  相似文献   

2.
Monodeuterated diacetylene (HCCCCD) and its 13C-substituted species H13CCCCD, HC13CCCD, HCC13CCD, and HCCC13CD were investigated by Fourier transform microwave spectroscopy. The D nuclear quadrupole splittings were almost completely resolved. For H13CCCCD hyperfine splittings caused by the anisotropic nuclear spin-spin interaction between the H and 13C nuclei were also observed. The analysis yielded rotational constants, centrifugal distortion constants, and the constants for the nuclear quadrupole coupling and anisotropic nuclear spin-spin interaction. The substitution structure of HCCCCD was calculated as follows: rs(C-H) = 1.056054(39) Å, rs(CC) = 1.208631(4) Å, rs(C-C) = 1.374117(6) Å, rs(CC) = 1.208116(4) Å, and rs(C-D) = 1.056231(17) Å, in the order of the arrangement of the bonds. A rough estimate of the equilibrium structure is also presented. The eQq constant for the deuterium nucleus is 0.2061(4) MHz. The anisotropic 13C-H spin-spin interaction constant was experimentally determined for the first time as b = −29.2(15) kHz, which is defined as the coefficient of (3I2zI3z − I2 · I3), where I2 and I3 denote the H and 13C nuclear spins, respectively, and I2z and I3z their components along the molecular axis. The observed b constant is not accounted for by the direct magnetic dipole-dipole interaction only, suggesting a significant contribution from indirect anisotropic interaction.  相似文献   

3.
Optical absorption and emission spectra of Er3+/Yb3+ ions in PLZT (Pb1−xLaxZryTi1−yO3) ceramic have been studied. Based on the Judd—Ofelt (J-O) theory, the J-O intensity parameters were calculated to be Ω2=2.021×10−20 cm2, Ω4=0.423×10−20 cm2, Ω6=0.051×10−20 cm2 from the absorption spectrum of Er3+/Yb3+-codoped PLZT. The J-O intensity parameters have been used to calculate the radiative lifetimes and the branching ratios for some excited 4I13/2, 4I11/2, 4I9/24F9/2, and 4S3/2 levels of Er3+ ion. The stimulated emission cross-section (8.24×10−21 cm2) was evaluated for the 4I13/24I15/2 transition of Er3+. The upconversion emissions at 538, 564, and 666 nm have been observed in Er3+/Yb3+-codoped PLZT by exciting at 980 nm, and their origins were identified and analyzed.  相似文献   

4.
Erbium-doped MoO3−Bi2O3−TeO2 (MBT) glasses suitable for broadband optical amplifier applications have been fabricated and characterized optically. The maximum phonon band of undoped glasses is at 915 cm−1, and the emission from the Er3+: 4I13/2 → 4I15/2 transition locates around 1.53 μm with a full width at half maximum (FWHM) of ∼80 nm. The lifetime and quantum efficiency of the 4I13/2 level are 2.13 ms and ∼90%, respectively. Under the same measurement condition, the upconversion emission intensities at 550 nm in Er3+-doped MBT glasses is about 30 times weaker than that in Er3+-doped Na2O−ZnO−TeO2 (NZT) glasses.  相似文献   

5.
The competition between two laser transitions in Er:YLiF4 (4S3/2 → 4I15/2 at 551 nm and 4S3/2 → 4I13/2 at 850 nm) is studied using a model based on rate equations. The laser emission is pumped by upconversion at 795 nm; for comparison, we also discuss upconversion pumping by another mechanism, at 970 nm. The conditions that favor laser emission in various regimes on these two transitions are found.  相似文献   

6.
The optical absorption spectra of yttrium aluminum garnet (YAG) crystals doped with Nd3+ ions with different concentrations (0.6 at%, 1.0 at%, 1.2 at%) at the temperature range from 300 K to 500 K have been measured. The calculated Judd–Ofelt (JO) parameters Ωt (t=2, 4, 6) based on the spectra have been used to predict the radiative transition probabilities, branching ratios and radiative lifetimes of the transitions from 4F3/2 level to the lower levels (4I13/2, 4I11/2, 4I9/2) at each concentration and temperature. The three JO parameters Ωt (t=2, 4, 6), according to the calculation, decrease with the increasing doped concentration at each temperature. The JO parameters Ω2 and Ω4 increase, while the parameter Ω6 decreases with the increasing temperature at each concentration. The branching ratios and radiative transition probabilities of the transitions from the 4F3/2 level to 4I13/2 and 4I11/2 levels decrease, while the transition from the 4F3/2 level to 4I9/2 level increases with the increasing temperature. The obtained results at each concentration and temperature are discussed.  相似文献   

7.
A series of Er3+/Yb3+-co-doped 60Bi2O3-(40−x) B2O3 -xGa2O3 (BBGA x=0, 4, 8, 12, 16 mol%) glasses have been prepared. The absorption spectra, emission spectra, fluorescence lifetime of Er3+:4I13/2 level and thermal stability were measured and investigated. Three Judd-Ofelt intensity parameters Ωt (t=2,4,6) (Ω2=(4.67-5.93)×10−20 cm2, Ω4=(1.50-1.81)×10−20 cm2, Ω6=(0.92-1.17)×10−20 cm2) of Er3+ ions were calculated by Judd-Ofelt theory. It is found that the Ω6 first increases with the increase of Ga2O3 content from 0 to 8 mol% and then decreases, which is mainly affected by the number of non-bridging oxygen ions of the glass network. The high peak of stimulated emission cross-section () of Er3+: 4I13/24I15/2 transition were obtained according to McCumber theory and broad full width at half maximum (FWHM=69-76 nm) of the 4I13/24I15/2 transition of Er3+ ions were measured. The results indicate that these new BBGA glasses can be used as a candidate host material for potential broadband optical amplifiers.  相似文献   

8.
We present measurements of the linear Stark effect on the 4I15/2 → 4I13/2 transition in an Er3+-doped proton-exchanged LiNbO3 crystalline waveguide and an Er3+-doped silicate fiber. The measurements were made using spectral hole burning techniques at temperatures below 4 K. We measured an effective Stark coefficient (Δμeχ)/(h) = 25 ± 1 kHz/V cm−1 in the crystalline waveguide and  kHz/V cm−1 in the silicate fiber. These results confirm the potential of erbium-doped waveguides for quantum state storage based on controlled reversible inhomogeneous broadening.  相似文献   

9.
This paper reports on the absorption, visible and near-infrared luminescence properties of Nd3+, Er3+, Er3+/2Yb3+, and Tm3+ doped oxyfluoride aluminosilicate glasses. From the measured absorption spectra, Judd-Ofelt (J-O) intensity parameters (Ω2, Ω4 and Ω6) have been calculated for all the studied ions. Decay lifetime curves were measured for the visible emissions of Er3+ (558 nm, green), and Tm3+ (650 and 795 nm), respectively. The near infrared emission spectrum of Nd3+ doped glass has shown full width at half maximum (FWHM) around 45 nm (for the 4F3/24I9/2 transition), 45 nm (for the 4F3/24I11/2 transition), and 60 nm (for the 4F3/24I13/2 transition), respectively, with 800 nm laser diode (LD) excitation. For Er3+, and Er3+/2Yb3+ co-doped glasses, the characteristic near infrared emission bands were spectrally centered at 1532 and 1544 nm, respectively, with 980 nm laser diode excitation, exhibiting full width at half maximum around 50 and 90 nm for the erbium 4I13/24I15/2 transition. The measured maximum decay times of 4I13/24I15/2 transition (at wavelength 1532 and 1544 nm) are about 5.280 and 5.719 ms for 1Er3+ and 1Er3+/2Yb3+ (mol%) co-doped glasses, respectively. The maximum stimulated emission cross sections for 4I13/24I15/2 transition of Er3+ and Er3+/Yb3+ are 10.81×10−21 and 5.723×10-21 cm2. These glasses with better thermal stability, bright visible emissions and broad near-infrared emissions should have potential applications in broadly tunable laser sources, interesting optical luminescent materials and broadband optical amplification at low-loss telecommunication windows.  相似文献   

10.
Upconversion (UC) emissions at 360 ((5F, 3F, 5G)2 → 5I8), 392 (3K7/5G4 → 5I8), 428 (5G5 → 5I8), 554 (5S2/5F4 → 5I8), 667 (5F5 → 5I8) and 754 (5S2/5F4 → 5I7) nm were obtained in 0.1 mol% Ho3+/x mol% Yb3+:Y2O3 (x = 2, 5, 8, 11, 15) bulk ceramics under infrared (IR) excitation at 976 nm. The intensity of the UC luminescence centered at 554 and 754 nm increased with Yb3+ concentration from 2 to 5 mol% and decreased from 5 to 15 mol%, while the UC luminescence centered at 392, 428 and 667 nm increased with Yb3+ concentration from 2 to 11 mol%, then started to reduce with Yb3+ concentration until 15 mol%. This comes from the competition between the energy back transfer (EBT) process [5S2/5F4(Ho) + 2F7/2(Yb)  5I6(Ho) + 2F5/2(Yb) as well as 5F5(Ho) + 2F7/2(Yb)  5I7(Ho) + 2F5/2(Yb)] and spontaneous radiation process. The intensity of the UC luminescence centered at 360 nm always increases with Yb3+ concentration from 2 to 15 mol%. We believe that it may come from the cooperation of energy transfer process from Yb3+ ions in the 2F5/2 state and the cross energy transfer process 5S2/5F4 + 5I6 → (5F, 3F, 5G)2 + 5I8.  相似文献   

11.
The green up-conversion fluorescence of Er3+ ions doped in an nonlinear optical ZnO-Nb2O5-TeO2 glass was observed by using 800 nm excitation from a regenerative femtosecond (fs) Ti:Sapphire laser. The detailed analysis on two fluorescence lines at 526 nm (2H11/2-4I15/2) and 548 nm (4S3/2-4I15/2) revealed the fs laser heating of the multi-component TeO2-based glass, which was possibly due to its nonlinear absorption of the host glass via the imaginary part of the third-order optical susceptibility (χ(3)). The result was compared with that of a Er3+-doped aluminosilicate glass under the same irradiation condition. When the fs laser was irradiated to the multicomponent TeO2-based glass in the power density of 150 TW/cm2, the laser spot was heated up to ∼520 K, which however was still less than the glass transition temperature (Tg=688 K). This technique provides a useful sensing method of laser spot temperature even inside transparent materials.  相似文献   

12.
The current-voltage (I-V) and capacitance-voltage (C-V) characteristics of metal-insulator-semiconductor (Al/Si3N4/p-Si) Schottky barrier diodes (SBDs) were measured in the temperature range of 80-300 K. By using the thermionic emission (TE) theory, the zero-bias barrier height ΦB0 calculated from I-V characteristics was found to increase with increasing temperature. Such temperature dependence is an obvious disagreement with the negative temperature coefficient of the barrier height calculated from C-V characteristics. Also, the ideality factor decreases with increasing temperature, and especially the activation energy plot is nonlinear at low temperatures. Such behaviour is attributed to Schottky barrier inhomogeneties by assuming a Gaussian distribution of barrier heights (BHs) at interface. We attempted to draw a ΦB0 versus q/2kT plot to obtain evidence of a Gaussian distribution of the BHs, and the values of ΦBo = 0.826 eV and αo = 0.091 V for the mean barrier height and standard deviation at zero-bias, respectively, have been obtained from this plot. Thus, a modified ln(Io/T2) − q2σo2/2(kT)2 versus q/kT plot gives ΦB0 and Richardson constant A* as 0.820 eV and 30.273 A/cm2 K2, respectively, without using the temperature coefficient of the barrier height. This value of the Richardson constant 30.273 A/cm2 K2 is very close to the theoretical value of 32 A/cm2 K2 for p-type Si. Hence, it has been concluded that the temperature dependence of the forward I-V characteristics of the Al/Si3N4/p-Si Schottky barrier diodes can be successfully explained on the basis of TE mechanism with a Gaussian distribution of the barrier heights. In addition, the temperature dependence of energy distribution of interface state density (NSS) profiles was determined from the forward I-V measurements by taking into account the bias dependence of the effective barrier height and ideality factor.  相似文献   

13.
The microwave spectra of two isotopic species of acetyl isocyanate, 13CH3C(O)NCO and CD3C(O)NCO, were observed in order to determine the ro structure and confirmation of the molecular conformation. These isotopic species were prepared by reacting acetyl-2-13C-chloride or acetyl-d3 chloride with sliver cyanate. The rotational spectra of A-level in 26.5-60.0 GHz region have been observed by Stark-modulated microwave spectrometer. Some absorption lines in E-level were observed in 13CH3C(O)NCO. The rotational constants in the ground vibrational state were determined to be A = 10654.8(18), B = 2177.32(2), and C = 1827.65(2) MHz for 13CH3C(O)NCO, and A = 9713.90(6), B = 2042.04(2), and C = 1722.78(2) MHz for CD3C(O)NCO, respectively. The values of ΔI (= Ic − Ia − Ib) of the 13C species (−3.024(13) uÅ2) and the d3 species (−6.163(3) uÅ2) indicate that the molecule has Cs symmetry. The rs coordinates of the carbon atom in the methyl group were determined to be |a| = 2.183(3), |b| = 0.706(9), and |c| = 0.080(87) Å. The determined coordinates were in agreement with those calculated for the cis form, in which the carbonyl group is eclipsed by the NCO group. The six structural parameters of the cis form were adjusted by fitting to the observed rotational constants. The observed rotational constants of the cis form were in better agreement with those calculated using the QCISD/6-31G (d, p) level rather than those calculated using the MP2/6-31G (d, p) level. The barrier of internal rotation of the methyl group was determined as 4.283(16) kJ mol−1 in 13CH3C(O)NCO. The structural tendencies and the relationship between RNC and 14N quadrupole coupling constants (χcc) were discussed.  相似文献   

14.
Single crystals of TlGaS2 were prepared by a special modified Bridgman technique and used to investigate the switching phenomena. The particular interest shown in switching studies of p-type TlGaS2 compound is associated with the possibility of its uses as an effective switching and memory elements in electronic devices. The switching effect observed in such crystal shows a memory character. Using a crystal holder and cryostat we measured the switching phenomenon at different ambient conditions such as temperature, light illumination as well as sample thickness. Pronounced parameters for switching for sample of thickness 0.17 cm were determined from the experimental data such as threshold voltage Vth = 400 V, threshold current Ith = 37 μA, holding voltage Vh = 350 V, holding current Ih = 42.3 × 10−4 A, threshold power Pth = 1.48 × 10−2 W, threshold field Eth = 196.429 V/cm as well as the ratio between the resistance in the off state ROFF to the resistance in the conducting state RON as 130.253. The factors affecting these parameters have also been investigated.  相似文献   

15.
The microwave spectra of cyclohexanone oxime and d1 (=NOD) and d4(2,2,6,6-d4) derivatives were observed in the frequency range from 8 to 40 GHz in the ground and excited vibrational states. The rotational constants were determined to be A = 3799.844(48), B = 1513.7912(23), and C = 1189.6118(29) MHz for normal species, A = 3791.835(88), B = 1461.0324(47), and C = 1157.5653(53) MHz for d1 species, and A = 3364.141(49), B = 1487.9551(34), and C = 1154.0965(44) MHz for d4 species in the ground vibrational state. The planar moments, Pbb (Pbb = (Ic + Ia − Ib)/2) of normal, d1, and d4 species were determined to be 111.9885(26), 111.9817(46), and 124.2394(49) uÅ2, respectively. The almost same values of Pbb of normal and d1 species suggest that the hydroxyl hydrogen atom is very close to the a-c plane. From the rs coordinates of the hydroxyl hydrogen atom, the OH bond was found to be at the trans position with respect to the CN double bond. The conformation of cyclohexanone oxime was determined to be chair form by comparing the observed and calculated rotational constants, ΔI, and planar moments, and taking account of the calculated the relative energy difference, ΔE. The structural parameters, the three bond lengths, three bond angles, and three dihedral angles, were adjusted to the nine rotational constants observed. The bond angle of ∠C2C1N is much wider than that of ∠C6C1N by about 10°. The dihedral angles of ∠C1C2C3C4, ∠C2C3C4C5, and ∠C3C4C5C6 were determined to be 53.3(5), −57.2(5), and 57.2(5)°. Two vibrational modes were assigned to the ring-bending and ring-twisting ones, which are almost harmonic up to v = 3.  相似文献   

16.
Effects of WO3 and CdO on the spectroscopic properties of Nd3+ doped tellurite glasses were investigated. The optical band gaps and Urbach energies of the samples were determined using the dependence of the absorption coefficient on the photon energy. The Urbach energies were found to vary from 0.18 to 0.25 eV as the WO3 content in the binary glasses decreased from 20.0 to 10.0 mol% while the optical band gap of the same glasses did not show an appreciable dependence on the glass composition. Judd-Ofelt (Ωt) parameters were calculated from the optical absorption spectra measured at room temperature. In all the glasses the J-O parameters follow the same trend as Ω2>Ω6>Ω4. The J-O intensity parameters were used to compute the radiative properties such as the radiative transition probabilities (Aed), branching ratios (β) and radiative lifetimes (τr) for all the possible fluorescence bands. The fluorescence spectra obtained upon 805.2 nm excitation exhibited an intense emission band centered at 1064 nm (4F3/24I11/2) and two weak bands at 910 nm (4F3/24I9/2), and 1340 nm (4F3/24I13/2). The stimulated emission cross-section for the 1064 nm emission was determined using the emission spectra. The highest gain bandwidth (σe×ΔλP) was determined to be 155.4 for the 0.79TeO2-0.15WO3-0.05CdO ternary glass composition, which could be more useful as promising material for the design and development of fiber amplifiers and lasers.  相似文献   

17.
Single-frequency diode lasers have been frequency stabilized to 1.5 kHz Allan deviation over 0.05-50 s integration times, with laser frequency drift reduced to less than 1.4 kHz/min, using the frequency reference provided by an ultranarrow inhomogeneously broadened Er3+:4I15/24I13/2 optical absorption transition at a vacuum wavelength of 1530.40 nm in a low-strain LiYF4 crystal. The 130 MHz full-width at half-maximum (FWHM) inhomogeneous line width of this reference transition is the narrowest reported for a solid at 1.5 μm. Strain-induced inhomogeneous broadening was reduced by using the single isotope 7Li and by the very similar radii of Er3+ and the Y3+ ions for which it substitutes. To show the practicability of cryogen-free cooling, this laser stability was obtained with the reference crystal at 5 K; moreover, this performance did not require vibrational isolation of either the laser or crystal frequency reference. Stabilization is feasible up to T=25 K where the Er3+ absorption thermally broadens to ∼500 MHz. This stabilized laser system provides a tool for interferometry, high-resolution spectroscopy, real-time optical signal processing based on spatial spectral holography and accumulated photon echoes, secondary frequency standards, and other applications such as quantum information science requiring narrow-band light sources or coherent detection.  相似文献   

18.
A new compound, K4(SO4)(HSO4)2(H3AsO4) was synthesized from water solution of KHSO4/K3H(SO4)2/H3AsO4. This compound crystallizes in the triclinic system with space group P1¯ and cell parameters: a=8.9076(2) Å, b=10.1258(2) Å, c=10.6785(3) Å; α=72.5250(14)°, β=66.3990(13)°, γ=65.5159(13)°, V=792.74(3) Å3, Z=2 and ρcal=2.466 g cm−3. The refinement of 3760 observed reflections (I>2σ(I)) leads to R1=0.0394 and wR2=0.0755. The structure is characterized by SO42−, HSO4 and H3AsO4 tetrahedra connected by hydrogen bridge to form two types of dimer (H(16)S(3)O4?S(1)O42− and H(12)S(2)O4?H3AsO4). These dimers are interconnected along the [1¯ 1 0] direction by the hydrogen bonds O(3)-H(3)?O(6). They are also linked by the hydrogen bridge assured by the hydrogen atoms H(2), H(3) and H(4) of the H3AsO4 group to build the chain S(1)O4?H3AsO4 which are parallel to the “a” direction. The potassium cations are coordinated by eight oxygen atoms with K-O distance ranging from 2.678(2) to 3.354(2) Å.Crystals of K4(SO4)(HSO4)2(H3AsO4) undergo one endothermic peak at 436 K. This transition detected by differential scanning calorimetry (DSC) is also analyzed by dielectric and conductivity measurements using the impedance spectroscopy techniques. The obtained results show that this transition is protonic by nature.  相似文献   

19.
The electronic conductivity of pure ceria with two different impurity levels is examined by dc polarization technique based on the Hebb-Wagner ion blocking method. The impurity level for the ceria with 99.999% purity (5N-CeO2) is about 1/100 of that with 99.9% purity (3N-CeO2) as confirmed by the fluorescence intensity of impurities obtained by Raman spectroscopy. The electronic conductivity for the 5N-CeO2 was measured at T = 973 K to 1173 K, and the results are essentially the same as those for the 3N-CeO2. The electronic conductivity increases with decreasing of P(O2) following slope values of − 1/4 to − 1/6. The − 1/4 dependent region becomes narrower for the 5N-CeO2 than that for the 3N-CeO2. For both types of ceria, the P(O2) independent region appears in the same region of higher than 10− 2 and 10− 3 MPa at T = 1073 K and 973 K, respectively. Activation energies for the 5N-CeO2 were 2.2 eV, 2.6 eV and 1.9 eV in P(O2) dependent regions of − 1/6, − 1/4 and 0, respectively.  相似文献   

20.
Magnetization, magnetic susceptibility, electrical resistivity, thermoelectric power and X-ray photoemission measurements were performed on a polycrystalline sample of CeCuIn. This compound crystallizes in a hexagonal structure of the ZrNiAl type. The magnetic data indicate that CeCuIn remains paramagnetic down to 1.9 K with a paramagnetic Curie temperature of −13 K and an effective magnetic moment equal to 2.5 μB. The electrical resistivity has metallic character, yet in the entire temperature range studied here, it is a strongly nonlinear function of temperature. The temperature dependence of the thermoelectric power is dominated by a small positive maximum near 76 K and a deep negative minimum at about 16 K. Above 150 K the thermopower exhibits a Mott's type behavior. The positive sign of the Seebeck coefficient in this temperature region indicates that the holes are dominant charge and heat carriers. The structure of Ce 3d5/2 and Ce 3d3/2 XPS spectra has been interpreted in terms of the Gunnarsson-Schönhammer theory. Three final-state contributions f0, f1 and f2 are clearly observed, which exhibit a spin-orbit splitting ΔSO≈18.7 eV. The appearance of the 3d9f0 component is a clear evidence of the intermediate valence behavior of Ce. From the intensity ratio I(f0)/[I(f0)+I(f1)+I(f2)] the 4f-occupation number is estimated to be 0.95. In turn, the ratio I(f2)/[I(f1)+I(f2)]=0.08 yields a measure of the hybridization energy that is equal to 45 meV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号