首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 631 毫秒
1.
Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors were synthesized using a hydrothermal method. The phosphors were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and up-conversion (UC) emission spectra. After annealing, the phosphors emitted white light under a 980 nm continuous wave diode laser (CW LD 2 W) excitation. As the excitation power density changed in the range of 20-260 W/cm2, the chromaticity coordinates of the UC light of the phosphor Ca0.885Tm0.005Er0.01Yb0.1F2 fell well in the white region of the 1931 CIE diagram. For the proportion of red, green and blue (RGB) in white light is strict, key factors for achieving UC white light, such as host materials, rare earth ions doping concentrations, annealing temperatures, as well as the excitation power densities, were investigated and discussed.  相似文献   

2.
NaYF4:Yb3+,Tm3+ nanorods are prepared with hydrothermal method. The upconversion luminescent properties are investigated under dual excitation of 980 nm and 808 nm. The blue emission is observed at about 475 nm under dual excitation. The intensity is 2.6 times higher than the total intensity of the two corresponding single wavelength excitations, showing a synergistic upconversion effect occurring there. The dual wavelength excitation not only effectively decreases non-radiative relaxation pumped by 980 nm but also reduces the rate of the back energy transfer from Tm3+ to Yb3+ pumped by 808 nm. The result provides a possible new way to further improve the upconversion efficiency of rare earth doped phosphor.  相似文献   

3.
Yb3+ doped phosphor of Gd2O3 (Gd2O3:Yb3+) have been prepared by solid state reaction method. The structure and the particle size have been determined by X-ray powder diffraction measurements. The average particle size of the phosphor is in between 35 and 50 nm. The particle size and structure of the phosphor was further confirmed by TEM analysis. The visible and NIR luminescence spectra were recorded under the 980 nm laser excitation. The visible upconversion luminescence of Yb3+ ion was due to cooperative luminescence and the presence of rare earth impurity ions. The cooperative upconversion and NIR luminescence spectra as a function of Yb3+ ion concentration were measured and the emission intensity variation with Yb3+ ion concentration was discussed. Yb3+ energy migration quenched the cooperative luminescence of Gd2O3:Yb3+ phosphor with doping level over 5%, while the NIR emission luminescence continuously increases with increasing Yb3+ ion concentration.  相似文献   

4.
Cubic phase Lu2O3:Er3+/Yb3+ nanocrystal phosphors were prepared by sol–gel method. Fourier transform infrared (FT-IR) spectra were measured to evaluate the vibrational feature of the samples. Green and red radiations were observed upon 980 nm diode laser excitation. Laser power and Er3+ or Yb3+ doping concentration dependence of upconversion luminescence were studied to understand upconversion mechanisms. Excited state absorption, cross relaxation and energy transfer processes are the possible mechanisms for the visible emissions.  相似文献   

5.
C. Joshi  S.B. Rai 《Optics Communications》2011,284(19):4584-4587
Optical absorption and photoluminescent properties of Ho3+/Yb3+ co-doped tellurite and zinc tellurite glasses are investigated. The effect of zinc oxide as a modifier on the luminescence properties of above mentioned samples has been explored. Two intense upconversion emission bands centered at 546 (5F4 + 5S2 → 5I8) and 660 nm (5F5 → 5I8) are observed on excitation with 976 nm diode laser. Zinc oxide acts as a quencher for 976 nm excited upconversion emission. The up and downconversion emission spectra are recorded with 532 nm excitation source also. In this case zinc oxide improves the up and downconversion emissions. A large enhancement in upconversion intensity has been observed when Ho3+ ion is co-doped with Yb3+ ion. The dependence of upconversion intensities on excitation power and on temperature has also been studied. The power dependence study shows a quadratic dependence of the fluorescence intensity on the excitation power while a decrement in emission intensity of all the transitions at different rates with increase in temperature is observed in temperature dependence study. The possible mechanisms are also discussed in order to understand the upconversion and energy transfer processes.  相似文献   

6.
Er3+ doped ZnO-CaO-Al2O3 nano-composite phosphor has been synthesized through combustion method and its emission and harmonic generation properties have been studied. The X-ray diffraction and thermal analysis techniques have been used to prove the dual phase (ZnO and CaO-Al2O3) nature of the phosphor. The phosphor has shown up-conversion emission on near-infra-red (976 nm) excitation and down-conversion emission on 355 nm excitation in presence of Er3+ and thus behaves as a dual mode phosphor. On excitation with 976 nm diode laser, material shows color tunability (calcination of composite material at different temperatures). Formation of ZnO nanocrystals on heat treatment of as-synthesized sample has shown its characteristic emission at 388 nm and also the energy transfer from ZnO to Er3+ ions. The low temperature emission measurements have been carried out and the results have been discussed. Phosphor has shown strong second harmonic generation (SHG) at 532 nm on 1064 nm and at 266 nm on 532 nm excitation.  相似文献   

7.
Here we reported that the optical properties of novel blue-emitting Ce3+ activated XMg2Al16O27 (X = Ba, Sr) phosphors were prepared by combustion method successfully. The excitation spectrum shows a broad band extending from 280 to 380 nm, centered at 355 nm, and the emission spectrum shows intense blue emission broad band centering at 441 nm for Ba2+ and Sr2+ host lattices. XRD pattern indicates crystalline nature of prepared phosphors. SEM analysis shows morphology of the ternary-hexaaluminate based phosphor prepared by combustion method. The Ce3+ activated XMg2Al16O27 (X = Ba, Sr) should be a promising blue phosphor for near ultraviolet-based white-light-emitting diodes.  相似文献   

8.
The spectroscopic characteristics and fluorescence dynamics for Yb3+/Ho3+:NaY(WO4)2 crystal were investigated. The parameters of oscillator strengths, the spontaneous transition probabilities, the fluorescence branching ratios, the radiative lifetimes and the stimulated emission cross sections have been calculated based on Judd-Ofelt theory and Füchtbauer-Ladenburg method. The energy transfer efficiency from Yb3+ to Ho3+ was 65.85%. The green emission (530-570 nm) corresponding to (5F4, 5S2)→5I8 transition, red emission (640-670 nm) due to 5F55I8 transition and NIR emission (740-770 nm) attributed to (5F4, 5S2)→5I7 transition were observed on 974 nm excitation at room temperature. Under low pump power, the intensity of green light emission is weaker than that of the red light, while under high pump power, the case is on the contrary. The upconversion is based on the two-photon process either the energy transfer from Yb3+ ions or by the excited state absorption. The proposed mechanisms of upconversion emissions were provided.  相似文献   

9.
We report on the energy transfer and frequency upconversion spectroscopic properties of Er3+-doped and Er3+/Yb3+-codoped TeO2-ZnO-Na2O-PbCl2 halide modified tellurite glasses upon excitation with 808 and 978 nm laser diode. Three intense emissions centered at around 529, 546 and 657 nm, alongwith a very weak blue emission at 410 nm have clearly been observed for the Er3+/Yb3+-codoped halide modified tellurite glasses upon excitation at 978 nm and the involved mechanisms are explained. The quadratic dependence of fluorescence on excitation laser power confirms the fact that the two-photon contribute to the infrared to green-red upconversion emissions. And the blue upconversion at 410 nm involved a sequential three-photon absorption process.  相似文献   

10.
Pr3+, Yb3+ co-doped Y2O3 transparent ceramics have been prepared by the solid state reaction and vacuum sintering. Down-conversion near infrared emission has been demonstrated upon a 482 nm excitation. The energy of the 482 nm blue photon was first absorbed by Pr3+ and then delivered to Yb3+. Possible energy transfer mechanisms from Pr3+ to Yb3+ have been discussed. Under the 482 nm excitation, the Pr4+-Yb2+ charge transfer state would not seriously influence the energy transfer process. The dominant one should be either the cooperative down-conversion or the two-step photon emission. The efficient down-conversion near infrared emission has potential application in enhancing the conversion efficiency of crystalline silicon solar cells.  相似文献   

11.
Erbium and ytterbium codoped double tungstates NaY(WO4)2 crystals were prepared by using Czochralski (CZ) pulling method. The absorption spectra in the region 290-2000 nm have been recorded at room temperature. The Judd-Ofelt theory was applied to the measured values of absorption line strengths to evaluate the spontaneous emission probabilities and stimulated emission cross sections of Er3+ ions in NaY(WO4)2 crystals. Intensive green and red lights were measured when the sample were pumped by a 974 nm laser diode (LD), especially, the intensities of green upconversion luminescence are very strong. The mechanism of energy transfer from Yb3+ to Er3+ ions was analyzed. Energy transfer and nonradiative relaxation played an important role in the upconversion process. Photoexcited luminescence experiments are also fulfilled to help analyzing the transit processes of the energy levels.  相似文献   

12.
Europium doped BaAl12O19 powder phosphors have been synthesized by combustion process within few minutes. The phosphors have been characterized by XRD, SEM, FT-IR, EPR and PL techniques. The EPR spectrum exhibits an intense resonance signal at g=1.96 characteristic of Eu2+ ions. In addition to this two weak resonance signals have been observed at g=2.28 and g=4.86. The population of the spin levels (N) for the resonance signal at g=1.96 is calculated as a function of temperature. By post-treating the phosphor at 1350 °C under a reducing atmosphere, it is observed that the population of spin levels has been increased five times. The excitation spectrum shows a peak at 326 nm with a shoulder at 290 nm. Upon excitation at 326 nm, the emission spectrum exhibits a well defined broad band with maximum at 444 nm emitting a blue light corresponding to 4f65d→4f7 transition. The luminescence intensity also has been enhanced to 60% by post-treating the phosphor at 1350 °C under a reducing atmosphere.  相似文献   

13.
The Ca12Al14O33: Yb3+/Yb2+ single phase nano-phosphor has been synthesized through combustion route and its luminescence and lifetime studies have been carried out up to 20 K using 976 and 266 nm excitations. The samples heated in open atmosphere have shown the presence of Yb in Yb3+ and Yb2+ states. The 976 nm excitation results a cooperative upconversion emission at 486 nm due to the Yb3+ state and a broad band in the blue region and has been assigned to arise from the defect centers. The 266 nm excitation on the other hand results a broad emission band even from as-synthesized phosphor without doping of Yb, the width of which increases in presence of Yb due to the emission from Yb2+ ions formed in heated samples. The white emission covers almost whole visible region with bandwidth 190 nm. The ions in Yb2+ state has been found to increase with the increase in heating temperature up to 1,273 K. A back conversion of Yb2+ to Yb3+ has been observed for higher temperatures. Effect of boric and phosphoric acids as flux on the emission properties of Yb3+ and Yb2+ states have been examined and discussed. Quantum yield of emission has also been determined for different samples.  相似文献   

14.
In this paper we report the combustion synthesis of trivalent rare-earth (RE3+ = Dy, Eu and Ce) activated Sr4Al2O7 phosphor. The prepared phosphors were characterized by the X-ray powder diffraction (XRD) and photoluminescence (PL) techniques. Photoluminescence emission peaks of Sr4Al2O7:Dy3+ phosphor at 474 nm and 578 nm in the blue and yellow region of the spectrum. The prepared Eu3+ doped phosphors were excited by 395 nm then we found that the characteristics emission of europium ions at 615 nm (5D0?7F2) and 592 nm (5D0?7F1). Photoluminescence (PL) peaks situated at wavelengths of 363 and 378 nm in the UV region under excitation at around 326 nm in the Sr4Al2O7:Ce3+ phosphor.  相似文献   

15.
Intense red emitting phosphors MGd2(MoO4)4: Eu3+ (M=Ca, Sr and Ba) have been synthesized by the simple sol-gel technique. The formation processes and the phase impurity of phosphors are characterized by thermogravimetry-differential thermal analysis (TG-DTA) and power X-ray diffraction (XRD). The narrower size distribution and the regular shape of the phosphor particles are also measured by Field emission scanning electronic microscopy (FE-SEM). Photo-luminescent properties of the phosphors are performed at room temperature. Their excitation spectra present strong absorption at 395 nm near-UV light and 465 nm blue light, which match well with commercial LED chips. The phosphors exhibit satisfactory and excellent red light dominated by 616 nm and their photoluminescence intensity is about 3-4 times stronger than that of phosphor YAG under the 465 nm excitation. In addition, the optimal concentrations of Eu3+ for phosphors MGd2(MoO4)4 (M=Ca, Sr and Ba) have also been determined.  相似文献   

16.
Variations of fluorescence intensity ratio of green (generated from Er3+ 2H11/2 and 4S3/2 levels) and red (generated from the sublevels of Er3+ 4F9/2 level) upconversion emissions in Er3+/Yb3+/Li+:ZrO2 nanocrystals have been studied as a function of temperature under 976 nm laser diode excitation. In the temperature range of 323-673 K, the maximum sensitivities of about 0.0134 K− 1 and 0.0104 K− 1 are obtained by using green and red emission, respectively. Er3+/Yb3+/Li+:ZrO2 nanocrystals show potential application value in nanoscale thermal sensor.  相似文献   

17.
Er3+ doped and Yb3+/Er3+ co-doped Y4Al2O9 phosphors are prepared by the sol-gel method. The effect of dopant concentration on the structure and up-conversion properties is investigated by X-ray diffraction (XRD) and photoluminescence, respectively. XRD pattern indicates that the sample structure belongs to monoclinic. Under 980 nm excitation, the green and red up-conversion emissions are observed and the emission intensities depended on the Yb3+ ion concentration. The green up-conversion emissions decrease with the increase of Yb3+ concentration, while red emission increases as Yb3+ concentration increases from 0 to 8 at% and then decreases at high Yb3+ concentration. The mechanisms of the up-conversion emissions are discussed and results shows that in Er3+ and Yb3+/Er3+ co-doped system, cross-relaxation (CR) and energy transfer (ET) processes play an important role for the green and red up-conversion emissions.  相似文献   

18.
Downconversion of a single blue/green photon to two near-infrared photons offers a promising route to increase the efficiency of photovoltaic cells. Here we report on downconversion for the well-known upconversion couple (Er3+, Yb3+) doped into a host with low (∼200 cm−1) maximum phonon energy (KPb2Cl5). The intermediate energy level in both the upconversion and downconversion processes is the 4F7/2 level around 490 nm. While fast multi-phonon relaxation to the lower energy 2H11/2/4S3/2 levels is beneficial for upconversion, it prevents efficient downconversion. To reduce multi-phonon relaxation, a low-phonon energy host (KPb2Cl5) was doped with Er3+ and varying amounts of Yb3+ co-dopant. The results show that downconversion from the 4F7/2 level occurs, exciting two neighboring Yb3+ ions to the 2F5/2 level. The efficiency is however low due to multi-phonon relaxation from the 4F7/2 to the 4S3/2 level via the intermediate 2H11/2 level. Based on the results it is clear that efficient downconversion for the (Er3+, Yb3+) couple requires even lower phonon energy hosts (e.g. bromide host lattices). A Cl-Yb3+ charge transfer absorption band is observed between 300 and 400 nm. Excitation in this band results in two broad emission bands centered around 430 and 700 nm at temperatures below 30 K, which are assigned to Cl-Yb3+ charge transfer emission.  相似文献   

19.
Borate Ba3InB9O18 (BIBO) has been adopted as a host material for phosphors for the first time. Lanthanide ions (Eu3+/Tb3+)-doped BIBO phosphors have been synthesized by solid-state reaction and luminescent properties investigated under ultravoilet (UV) excitation. For red phosphor BIBO:Eu, dominant emission peaking at 590 nm was attributed to 5D07F1 transition of Eu3+, which confirmed that the local site of Eu3+ occupied by In3+ ion in BIBO crystal lattice is at inversion symmetry center. Optimum Eu3+ concentration of BIBO:Eu under UV excitation with 227 nm wavelength is around 40%. The green phosphor BIBO:Tb showed bright green emission at 550 with 232 nm light excited and optimal of Tb3+ concentration measured in BIBO is about 8%. The corresponding luminescence mechanisms of Ln-doped BIBO (Ln=Eu3+/Tb3+) were analyzed. The luminescent intensity of Tb3+ can be significantly improved by co-doping of Bi3+ in the BIBO:Tb lattice. The likely reason was proposed in terms of the different interactions of the host lattice with these ions, and of these ions with each other.  相似文献   

20.
Using the combustion synthesis, CaYAl3O7:Er3+ phosphor powders co-doped with Yb3+ have been prepared at low temperatures (550 °C) in a few minutes. Formation of the compound was confirmed by X-ray powder diffraction. Near-infrared to visible upconversion fluorescence emission in the Er3+ doped CaYAl3O7 phosphor powder has been observed. The effect of co-doping with triply ionized ytterbium in the CaYAl3O7:Er3+ phosphor has been studied and the process involved is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号