首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organic field-effect transistor (OFET) structures with the active layers on the basis of composite films of semiconductor polymer poly(3-hexylthiophene) (P3HT), fullerene derivatives [60]PCBM, [70]PCBM, and nickel (Ni) nanoparticles are obtained, and their optical, electrical, and photoelectrical properties are studied. It is shown that introducing Ni nanoparticles into P3HT: [60]PCBM and P3HT: [70]PCBM films leads to an increase in the absorption and to quenching of photoluminescence of the composite in the 400–600 nm spectral band due to the plasmon effect. In P3HT: [60]PCBM: Ni and P3HT: [70]PCBM: Ni OFET structures at the P3HT: [60]PCBM and P3HT: [70]PCBM concentrations of ~1: 1 and Ni concentrations of ~3–5 wt %, current–voltage (I–V) characteristics typical of ambipolar OFETs with the dominant hole conduction are observed. The charge-carrier (hole) mobilities calculated from the I–V characteristic at VG =–10 V were found to be ~0.46 cm2/(V s) for P3HT: [60]PCBM: Ni and ~4.7 cm2/(V s) for P3HT: [70]PCBM: Ni, which means that the mobility increases if [60]PCBM in the composition is replaced with [70]PCBM. The effect of light on the I–V characteristics of P3HT: [60]PCBM: Ni and P3HT: [70]PCBM: Ni OFETs is studied.  相似文献   

2.
In this paper, we report a high-performance P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting the polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach for the polymer. The grazing incidence X-ray diffraction, UV/Vis spectroscopic, and atomic force microscopic measurement results for the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing of the P3HT and PCBM solutions for 10 min has a higher degree of crystallinity, a higher absorption efficiency, and better phase separation, which together account for the higher charge transport properties and photovoltaic cell performance.  相似文献   

3.
In this paper, we report a high-performance P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach of the polymer. The results of grazing incidence X-ray diffraction, UV/Vis spectroscopic, and atomic force microscopic measurements of the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing P3HT and PCBM solutions for 10 min has higher degree of crystallinity, higher absorption efficiency, and better phase separation, which altogether account for the higher charge transport properties and photovoltaic cell performance.  相似文献   

4.
通过精确设定不同的退火环境气压,实现对P3HT(Poly(3-hexylthiophene -2,5-diyl)与PCBM([6,6]-Phenyl C61 butyric acid methyl ester)体系中聚噻吩结晶度以及共混相分离程度的控制,并在此基础上制备了结构为ITO/PEDOT∶PSS/P3HT∶PCBM/Al的正型光伏器件。在允许的压强设定范围内,器件各项性能参数均随退火环境压强的增大表现出先升高后下降的变化规律,并统一于气压设定为1 500 mTorr时获得最大值。从活性层的紫外-可见(UV-Vis)吸收光谱中发现P3HT在510 nm吸收峰以及550和600 nm肩峰附近的吸收强度随退火气压升高而增大,在气压为1 500 mTorr时达到最高,吸收强度的提升源于聚合物分子π—π堆叠的增加。原子力显微镜(AFM)进一步分析结果表明,高气压环境(>1 000 mTorr)能够促进P3HT∶PCBM共混组分在退火过程中形成较大程度的相分离,而当环境压强合适时(1 500 mTorr)适度的相分离利于聚合物形成良好有序结晶,从而能够提升活性层内部载流子传输能力,保证较高的短路电流与填充因子,制备的器件也因此表现出良好的光伏性能,光电转化效率达到3.56%。  相似文献   

5.
为了提高太阳能电池的性能,研究磁性纳米粒子在外加磁场的作用下对聚合物太阳能电池有源层P3HT:PCBM成膜及太阳能电池性能的影响。本文采用热分解法制备了磁性Fe3O4纳米粒子,将不同质量分数的Fe3O4纳米粒子掺入到P3HT:PCBM溶液中,旋涂后在外加磁场的作用下自组成膜。通过TEM、XRD对制备的Fe3O4纳米粒子进行表征,并利用偏光显微镜、原子力显微镜对成膜质量进行探究。结果表明,采用热分解法制备的Fe3O4纳米粒子直径在10 nm左右,在外加磁场作用下,Fe3O4纳米粒子对成膜有一定的调控作用。当Fe3O4纳米粒子掺杂质量分数为1%时,太阳能电池器件的开路电压增加3.77%,短路电流增加24.93%,光电转换效率提高7.82%。  相似文献   

6.
邓丽娟  赵谡玲  徐征  赵玲  王林 《物理学报》2016,65(7):78801-078801
将窄带隙聚合物PTB7-Th作为第三种物质掺入到P3HT:PCBM中制备了双给体结构的三元聚合物太阳能电池, 并且通过改变PTB7-Th的浓度来研究PTB7-Th对器件性能的影响. 研究发现, 掺入PTB7-Th后, 聚合物太阳能电池的短路电流和填充因子同时获得了提高, 使器件的光电转换效率得到了改善. 进一步分析表明, PTB7-Th的加入能够拓宽活性层的吸收光谱, 增加活性层吸收的光子数目, 有利于短路电流的提升. PTB7-Th与P3HT之间以电荷转移的形式相互作用, 这种作用方式有利于激子的解离, 从而使器件的填充因子得到了提高.  相似文献   

7.
The preparation and characterization of composite MEH-PPV/PCBM nanoparticles with doping levels up to 75 wt% PCBM is reported. These nanoparticles represent structures in between single molecules and bulk that allow for a detailed investigation of the role of nanostructure on the properties of the corresponding functional materials. Combining this material system with single particle spectroscopy studies reveals molecular scale information on the extent to which variations in polymer chain folding and interactions between polymer chains and fullerenes affect material morphology and photophysical properties. Key observations are that the single particle ensemble spectra shift with respect to each other depending on PCBM doping levels, and that the vibronic structure of the single particle ensemble spectra changes with PCBM doping levels. These observations are indicative of a reduction in conducting polymer conjugation length and interchain interactions due to steric effects caused by the presence of PCBM that result in reduced exciton transport.  相似文献   

8.
Photoluminescence of CdS nanoparticles embedded in a starch matrix   总被引:1,自引:0,他引:1  
CdS nanoparticles were synthesized by precipitation in aqueous solution using starch as the capping molecule, and the effect of the pH of the solution on the optical absorption, photoluminescence, and size of the nanoparticles was studied. Absorption spectra, obtained by photoacoustic spectroscopy, indicated that the band gap energy of the crystalline nanoparticles decreased from 2.68 eV down to 2.48 eV by increasing the pH of the solution from 9 up to 14. The X-ray diffraction analysis revealed that the CdS nanoparticles were of zinc blende structure, and that the particle size increased from 1.35 nm up to 2.45 nm with increasing pH. In addition, temperature-dependent photoluminescence (PL) measurements of the capped material showed a blue-shift of the emission peak for temperatures higher than 150 K, indicating the influence of starch on the formation of defect levels on the surface of the CdS nanoparticles.  相似文献   

9.
Highly ordered and dense TiO2 nanopore arrays are directly nanoimprinted on a transparent conductive glass substrate by using a polymethylmethacrylate/polydimethylsiloxane (PMMA/PDMS) composite soft template, which is replicated from an anodic aluminum oxide (AAO) replica mold. Results indicate that heat infiltration under vacuum conditions can ensure complete filling of PMMA into the AAO pores, and that free-standing PMMA nanorods with an aspect ratio more than 5 can be obtained by adjusting the AAO pore depth based on a freeze-drying technique. TiO2 nanopore arrays with different diameters from 30 to 300 nm and inter-pore distances between 70 and 450 nm can be easily fabricated by using the corresponding templates with different sizes. Preliminary solar cells are also assembled with a heterojunction of conjugated polymer/TiO2 nanopore arrays. Results indicate that the construction of poly-(3-hexylthiophene) (P3HT)/TiO2 nanopore arrays can be more helpful in quenching the PL emission of P3HT than that of P3HT/flat TiO2 film, and a maximum efficiency of about 0.32% can be obtained for a photovoltaic device with a TiO2/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/P3HT structure.  相似文献   

10.
Nanocomposites made of ZnO nanoparticles dispersed in thermoplastic polyurethane were synthesized using picosecond laser ablation of zinc in a polymer-doped solution of tetrahydrofuran. The pre-added polymer stabilizes the ZnO nanoparticles in situ during laser ablation by forming a polymer shell around the nanoparticles. This close-contact polymer shell has a layer thickness up to 30 nm. Analysis of ZnO polyurethane nanocomposites using optical spectroscopy, high resolution transmission electron microscopy and X-ray diffraction revealed that oxidized and crystalline ZnO nanoparticles were produced. Those nanocomposites showed a green photoluminescence emission centred at 538 nm after excitation at 350 nm, which should be attributed to oxygen defects generated during the laser formation mechanism of the monocrystalline nanoparticles. Further, the influence of pulse energy and polymer concentration on the production rate, laser fluence and energy-specific mass productivity was investigated.  相似文献   

11.
In an effort to develop hybrid organic solar cells with improved power conversion efficiency (PCE), devices based on poly (3-hexylthiophene) (P3HT):phenyl C61-butyric acid methyl ester (PCBM) active layer and poly (3,4-ethylenedioxythiophene) (PEDOT):poly (styrenesulfonate) (PSS) buffer layers were prepared. A systematic replacement of PCBM was achieved by introducing nanostructured TiO2 (∼15 nm particle size), dissolved separately in chlorobenzene (CB) and 1,2 –dichlorobenzene (DCB), to the (P3HT:PCBM) active layer while keeping a fixed amount for P3HT. To understand the effect of fullerene replacement with the inorganic metal oxide nanoparticles on different properties of resulting devices, a variety of techniques such as Current–Voltage (J–V) characteristics, Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Ultravoilet-Visible (UV–Vis) Spectrophotometry and External Quantum Efficiency (EQE) were employed. The addition of TiO2 nanoparticles in the active layer improved the power conversion efficiency (PCE) of P3HT:PCBM devices. The addition of TiO2 nanoparticles using CB as solvent enhanced the absorption in visible region and also introduced a red shift in the absorption spectra. A significant increase in EQE was observed for devices with TiO2 nanoparticles in the active layer. Mixing TiO2 also increased the surface roughness of the active layer where TiO2 nanoparticles were found to agglomerate as their concentration increased relative to fullerene derivative. A complete agglomeration of TiO2 was observed in the absence of PCBM.  相似文献   

12.
为研究掺杂石墨烯量子点(GQDs)对聚合物电池的影响,采用溶剂热法制备了GQDs,掺杂到聚3-己基噻吩和富勒烯衍生物(P3HT∶PCBM)中作光敏层制备了聚合物太阳能电池。掺杂不同浓度的GQDs后,聚合物电池的开路电压和填充因子都比未掺杂器件高。GQDs掺杂质量分数为0.15%时,形成的掺杂薄膜平整、均匀,填充因子提高了17.42%。GQDs经还原后,随还原时间的延长,填充因子FF增大。到45 min时,电池的FF基本稳定,从31.57%提高至40.80%,提高了29.24%。退火后,获得了最佳的掺杂GQDs的聚合物太阳能电池,开路电压Voc为0.54 V,填充因子FF为55.56%,光电转换效率为0.75%。  相似文献   

13.
Yang  Cuiping  He  Xiangfeng  Chen  Junsong  Chen  Dengyu  Liu  Yunjing  Xiong  Fei  Shi  Fangfang  Dou  Jun  Gu  Ning 《Journal of nanoparticle research》2013,15(8):1-13
We experimentally and theoretically characterize back-scattering and extinction of Ag nanoparticle (AgNP) arrays on both Si wafer substrates and optically-thick Ag substrates with and without organic poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) bulk-heterojunction thin film coatings. A strong red-shift in back-scattered light wavelength occurs from AgNP arrays on Si as a function of increasing mean nanoparticle diameter (ranging from 30 to 90 nm). Back-scattering from the AgNP array is notably quenched in the wavelength range of strong P3HT absorption when the organic layer is applied. However, back-scattering is enhanced to a degree relative to the uncoated AgNP array on Si at wavelengths greater than the absorption band edge of P3HT. For comparison, the optical properties of AgNPs on an optically-thick Ag substrate are reported with and without P3HT:PCBM thin film coatings. On the reflective Ag substrates, a significant enhancement (by a factor of 7.5) and red-shift of back-scattered light occurred upon coating of the AgNPs with the P3HT:PCBM layer. Additionally, red-edge extinction was enhanced in the P3HT:PCBM layer with the presence of the AgNPs compared to the planar case. Theoretical electromagnetic simulations were carried out to help validate and explain the scattering and extinction changes observed in experiment. Both increasing nanoparticle size and an increasing degree of contact with the Si substrate (i.e., effective index of the nanoparticle environment) are shown to play a role in increasing back- and forward-scattering intensity and wavelength, and in increasing absorption enhancements in both the organic and Si layers. AgNPs placed at the P3HT:PCBM/Si interface give rise to absorption increases in P3HT of up to 18 %, and only enhance Si absorption at wavelengths longer than the absorption band edge of P3HT (by almost 90 % in the 660–1,200 nm wavelength range). These results provide insight into how metal nanoparticles placed near an organic/inorganic interface can be employed for light management in tandem or hybrid organic/inorganic thin-film semiconductor configurations for solar energy harvesting applications or light detection applications.  相似文献   

14.
The inverted polymer:fullerene solar cells with structure of ITO/TiO2/P3HT:PCBM/MoO3/Al have been fabricated, where P3HT and PCBM stand for poly (3-hexylthiophene) and [6,6]-phenyl C61-butyric acid methyl ester, respectively. It is discovered that the P3HT:PCBM blend film manipulated into the improved stratification structure, characterized as P3HT crystallite-rich zone close to the top surface and PCBM constituent-rich zone adjacent to the bottom surface, can offer nearly the same power conversion efficiency of solar cell, compared to the one grown into the bulk heterojunction structure, characterized as the bicontinuous interpenetrating network of P3HT and PCBM. We provide an alternative insight to the morphology control of inverted polymer:fullerene solar cells.  相似文献   

15.
王桃红  陈长博  郭坤平  陈果  徐韬  魏斌 《中国物理 B》2016,25(3):38402-038402
The interface between the active layer and the electrode is one of the most critical factors that could affect the device performance of polymer solar cells. In this work, based on the typical poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester(P3HT:PCBM) polymer solar cell, we studied the effect of the cathode buffer layer(CBL) between the top metal electrode and the active layer on the device performance. Several inorganic and organic materials commonly used as the electron injection layer in an organic light-emitting diode(OLED) were employed as the CBL in the P3HT:PCBM polymer solar cells. Our results demonstrate that the inorganic and organic materials like Cs_2CO_3, bathophenanthroline(Bphen), and 8-hydroxyquinolatolithium(Liq) can be used as CBL to efficiently improve the device performance of the P3HT:PCBM polymer solar cells. The P3HT:PCBM devices employed various CBLs possess power conversion efficiencies(PCEs) of 3.0%–3.3%, which are ca. 50% improved compared to that of the device without CBL. Furthermore, by using the doped organic materials Bphen:Cs_2CO_3 and Bphen:Liq as the CBL, the PCE of the P3HT:PCBM device will be further improved to 3.5%, which is ca. 70% higher than that of the device without a CBL and ca. 10% increased compared with that of the devices with a neat inorganic or organic CBL.  相似文献   

16.
CaS:Ce, Sm nanophosphors were synthesized via solid state diffusion method. X-Ray diffraction confirmed the cubic crystalline phase of CaS:Ce, Sm nanoparticles. The particle size calculated using Debye-Scherrer formula was found to be 52 nm. The morphological investigations of the nanoparticles were made using TEM and found to have nearly spherical morphology with diameter 45-50 nm, which is in close agreement with the XRD result. The PL emission characteristics of CaS:Ce, Sm as a function of cerium and samarium concentrations have been studied and CaS:Ce0.6Sm0.4 system has maximum emission intensity, hence it was opted for further studies. The CaS:Ce0.6Sm0.4 system showed independent emission of Sm and Ce when excited at 330 and 450 nm, respectively. To study the energy transfer between cerium and samarium, the CaS:Ce0.6Sm0.4 was excited at wavelengths other than the excitation wavelengths of Ce (450 nm) and Sm (330 nm). The existence of Ce emission (at an excitation of 390 nm) even in the absence of Ce excitation band and Sm emission at an excitation of 405 nm, which is the excitation band of Ce, indicates the energy transfer at these two wavelengths. Thermoluminescence characteristics of 60Co irradiated CaS:Ce0.6Sm0.4 have been investigated for different doses of 0.14-125 Gy. All the glow curves show a single peak at 475 K. With increasing dose, the intensity of this peak increases and a shoulder is formed on the lower temperature side at 415 K at 21 Gy of exposure. CaS:Ce0.6Sm0.4 shows almost linear dose dependence up to 125 Gy.  相似文献   

17.
A dual plasmonic resonance effect on the performance of poly(3‐hexylthiophene) (P3HT):phenyl C61‐butyricacid methyl ester (PC61BM) based polymer solar cells (PSCs) has been demonstrated by selectively incorporating 25 nm colloidal gold nanoparticles (Au NPs) in a solution‐processed molybdenum oxide (MoO3) anode buffer layer and 5 nm colloidal Au NPs in the active P3HT:PCBM layer. The devices exhibit up to ~20% improvement in power conversion efficiency which is attributed to the dual effect of localized surface plasmon resonance (LSPR) of Au NPs with enhanced light absorption and exciton generation. Our report shows a guideline on the usage of dual LSPR effect for the solution‐processed polymer solar cells to achieve high efficiencies. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   

18.
Terbium (1 mol%) doped ZnO-SiO2 binary system was prepared by a sol-gel process. Nanoscopic effects of ZnO on the photoluminescence (PL) and the cathodoluminescence (CL) properties were studied. Defects emission from ZnO nanoparticles was measured at 560 nm and the line emission from Tb3+ ions in SiO2:Tb3+ and ZnO-SiO2:Tb3+ with a major peak at 542 nm was measured. The PL excitation wavelength for 542 nm Tb3+ emission was measured at ∼320 nm in both SiO2:Tb3+ and ZnO-SiO2:Tb3+. The CL data showed quenched luminescence of the ZnO nanoparticles at 560 nm from a composite of ZnO-SiO2:Tb3+ and a subsequent increase in 542 nm emission from the Tb3+ ions. This suggests that energy was transferred from the ZnO nanoparticles to enhance the green emission of the Tb3+ ions. The PL and CL properties of ZnO-SiO2:Tb3+ binary system and possible mechanism for energy transfer from the ZnO nanoparticles to Tb3+ ions are discussed.  相似文献   

19.
研究了不同粒径和表面修饰的纳米银粒子的发光特性。研究结果表明,在不同波长光激发下,纳米银粒子在362 nm附近出现较强的发射峰,592和725 nm附近出现较弱的发射峰。随着激发光波长增加,发射峰强度下降,362 nm附近的发射峰红移。纳米银颗粒对210 nm的激发光最为敏感。发射峰波长与纳米银粒子表面修饰状态和颗粒尺寸关系不大,只是随着颗粒尺寸的减小,发射峰强度下降。随着狭缝宽度的减小,发射峰强度下降。随着纳米银胶浓度减少,发射峰逐渐聚拢合并为426 nm的单峰,且发射峰的强度先增强后逐渐下降。通过纳米银粒子表面光电子的吸收-再发射和表面能级杂化探讨了纳米银粒子的发光机理。  相似文献   

20.
Intrinsic fluorescent polypyrrole (ppy) nanoparticles with different shapes were fabricated by atmospheric pressure plasma polymerization. Gradient electrical field and polarization of active particles in the plasma induce change of shape of nanoparticles from spherical to rod, when the plasma power varied from 5 W to 10 W. Both X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) results suggest that the atmospheric pressure plasma polymerization process (APPP) at the power of 5 W and 10 W can help to preserve the integrity of the structure of monomer due to the predominant role of radical polymerization in APPP at these powers. However, when the plasma power increased to 20 W, the ring structure of some pyrroles was destroyed, owing to existence of higher energy species. The polypyrrole nanoparticles exhibit the peak fluorescence around 415 nm. Fluorescent results show that the fluorescent properties of polypyrrole nanoparticles are related to the particle size of the polymer. The bigger particles would have more enlarged room for exciton diffusion, resulting in lower fluorescence intensity and red shift of the fluorescent peak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号