首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoluminescence properties of Y1−x(PO3)3:xEu3+ (0<x≤0.2) are investigated. The excitation spectrum of Y0.85(PO3)3:0.15Eu3+ shows that both the (PO3)33− groups and the CT bands of O2−-Y3+ can efficiently absorb the excitation energy in the region of 120-250 nm. Under 147 nm excitation, the optimal emissive intensity of Y1−x(PO3)3:xEu3+ (0<x≤0.2) is about 36% of the commercial phosphor (Y,Gd)BO3:Eu3+, which hints that the absorbed energy by the host matrix could be efficiently transferred to Eu3+. We try to study the concentration quenching mechanism of Y1−x(PO3)3:xEu3+ (0<x≤0.2) under 147 and 172 nm excitation.  相似文献   

2.
李杰  王育华  董其铮  刘吉地 《中国物理 B》2010,19(6):63301-063301
Y$_{0.75 - x}$GdxAl0.10BO$3:Eu$^{3+}0.10, 0.05R3+ ($R$=Sc, Bi) ($0.00 ≤ x ≤ 0.45$) powder samples are prepared by solid-state reaction and their luminescence properties are investigated. With the replacement of Y3+$ ions by Sc3+$ (or Bi3+)$ and Gd3+$ ions in (Y,Al)BO$3:Eu, the intensities of emission at 254 and 147~nm are remarkably improved, because Sc3+$ ions can absorb UV light and transfer the energy to Eu3+$ ions efficiently. Moreover, Gd3+$ and Bi$^{3 + }$ ions act as an intermediate ``bridge' between the sensitizer and the activator (Eu3+)$ in energy transfer to produce light in the (Y, Gd)BO$3:Bi3+$, Eu3+$ system more effectively. After doping an appropriate concentration of Gd3+$ into Y$_{0.50}$Gd$_{0.25}$Al0.10BO$3:Eu3+_{0.01}$, Bi$^{3+}_{0.05}$, the emission intensity reaches its maximum, which is nearly 110{\%} compared with the red commercial phosphor (Y,Gd)BO$3:Eu and better chromaticity coordinates (0.650, 0.350) are obtained.  相似文献   

3.
(Gd1?xEux)(BO2)3 (0≤x≤1) phosphors are synthesized by traditional high temperature solid state reaction. The photoluminescence (PL) properties of Gd(BO2)3 and Gd(BO2)3 activated with Eu3+ are investigated. The PL spectra exhibit the typical characteristic emission and excitation of Gd3+ and Eu3+ ions, and support the energy transfer taking place from Gd3+ to Eu3+ ions. The relationship between Eu3+ doping concentration and emission intensity is also studied. Even if all of the Gd3+ ions are substituted by Eu3+ ions, the concentration quenching between Eu3+ happens. However, the quenching is not complete. The luminescence decay curves are measured, and the lifetimes become short with the Eu3+ content increasing. The decreasing Gd3+ lifetimes also indicates that there exists efficient energy transfer between Gd3+ and Eu3+ ions.  相似文献   

4.
The influence of lithium doping on the crystallization, the surface morphology, and the luminescent properties of pulsed laser deposited Y2−xGdxO3:Eu3+ thin film phosphors was investigated. The crystallinity, the surface morphology, and the photoluminescence (PL) of films depended highly on the Li-doping and the Gd content. The relationship between the crystalline and morphological structures and the luminescent properties was studied, and Li+ doping was found to effectively enhance not only the crystallinity but also the luminescent brightness of Y2−xGdxO3:Eu3+ thin films. In particular, the incorporation of Li and Gd into the Y2O3 lattice could induce remarkable increase in the PL. The highest emission intensity was observed Li-doped Y1.35Gd0.6O3:Eu3+ thin films whose brightness was increased by a factor of 4.6 in comparison with that of Li-doped Y2O3:Eu3+ thin films.  相似文献   

5.
The photoluminescence (PL) emission and excitation behavior of red-emitting Eu0.1GdxLa1.9−xTeO6 (0.02?x?0.1) powder phosphors is reported. Three dominant bands centered at 395, 466 and 534 nm characterized the excitation spectrum. Under the excitation of 395 nm UV light, the emission spectrum exhibits an intense peak centered at 616 nm corresponding to the 5D07F2 transition of Eu3+. Because the f→f transitions are located in the wavelength range of blue or near-UV range, optimized phosphor, Eu0.10Gd0.08La1.82TeO6, is a promising material for solid-state lighting based on GaN LEDs applications.  相似文献   

6.
Cathodoluminescent (CL) spectra of Li-doped Gd2−xYxO3:Eu3+ solid-solution (0.0?x?0.8) were investigated at low voltages (300 V-1 kV). The CL intensity is maximum for the composition of x=0.2 and gradually reduces with increasing the amount of substituted Y content. In particular, small (∼100 nm) particles of Li-doped Gd1.8Y0.2O3:Eu3+ are obtained by firing the citrate precursors at only 650°C for 18 h. Relative red-emission intensity at 300 V of this phosphor is close to 180% in comparison with that of commercial red phosphor Y2O3:Eu3+. An increase of firing temperature to 900°C results in 400-600 nm sized spherical particles. At low voltages (300-800 V), the CL emission of 100 nm sized particles is much stronger than that of 400-600 nm sized ones. In contrast, the larger particles exhibit the higher CL emission intensity at high voltages (1-10 kV). Taking into consideration small spherical morphology and effective CL emission, Li-doped Gd1.8Y0.2O3:Eu3+ appears to be an efficient phosphor material for low voltage field emission display.  相似文献   

7.
The nanowire growth behavior and photoluminescence characteristics of red-emitting oxide phosphor Gd2−xEuxO3 have been investigated in the function of activator (Eu3+) concentrations (x=0.08, 0.12, 0.16, 0.20, and 0.24). Nanowires of Gd2−xEuxO3 phosphor were prepared by the dehydration of corresponding hydroxides Gd1−x/2Eux/2(OH)3 obtained by the hydrothermal reaction. Highly uniform nanowires of 20-30 nm in diameter can grow up to several tens of micrometers in length. A number of defects on the surface of Gd1.92Eu0.08O3 nanowires, which are induced during structural transformation from hexagonal hydroxide to cubic oxide, strongly decrease the luminescence efficiency in comparison with that of the bulk phosphor. In contrast, the photoemission intensity of nanowires is significantly improved with increasing Eu3+ content (x) of Gd2−xEuxO3 solid solution. The highest relative emission intensity of nanowires is observed when the x value is close to x=0.20. This content is much higher than the optimal concentration of Eu3+ (x=0.08-0.10) for the bulk Gd2O3:Eu powder.  相似文献   

8.
Blue phosphors Ca1 − xAl2O4: xEu2+ were prepared by high temperature solid-state method. Their structure, morphology and luminescent properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM) and fluorescence spectroscopy. The effect of different amounts of fluxing agent H3BO3 on structure, morphology and luminescent properties of blue phosphors Ca1 − xAl2O4: xEu2+ luminous intensity caused by different amount of H3BO3 was also investigated. The amount of H3BO3 doped Ca1 − xAl2O4: xEu2+ in optimal luminous intensity had been determined. The results showed that both the excitation and emission spectra of samples were all broad bands, and that the peak of emission spectra was near 442 nm, which was corresponding to the 4f65d → 4f7 transition of Eu2+ illuminating blue light. Ca1 − xAl2O4: xEu2+ (x = 3.5 mol%) could be gained with good morphology and the best luminous intensity when H3BO3 mass ratio was 0.5 wt%.  相似文献   

9.
Y0.99−xPO4:0.01Dy3+, xBi3+ (x=0, 0.01, 0.05, 0.10, 0.15, 0.20 and 0.25) phosphors have been synthesized by a modified chemical co-precipitation method using urea as a pH value regulator. The samples were characterized by X-ray powder diffraction (XRD) and photoluminescence spectroscopy. XRD results show that the samples have only single tetragonal structure when x≤0.15, but extraneous BiPO4 phase appears besides major tetragonal phase when x≥0.20. The crystallinity of the samples is found to improve with increasing Bi3+ ion concentration from 0 to 15 mol%, and then decreased for higher concentrations associated with increasing BiPO4 phase. Photoluminescence excitation spectra results show that the phosphor can be efficiently excited by ultraviolet light from 250 to 400 nm including four peaks at 294, 326, 352 and 365 nm. Emission spectra exhibit strong blue emission (483 nm) and another strong yellow emission (574 nm). When the Bi3+ ion concentration is 1 mol%, the intensity of excitation and emission spectra increased evidently. In addition, the yellow-to-blue emission intensity ratio (IY/IB) is strongly related to the excitation wavelength and not to the Bi3+ ion concentration.  相似文献   

10.
The red-emitting Ca0.54Sr0.16Eu0.08Gd0.12(MoO4)0.2(WO4)0.8 phosphor is improved in the emission charateristics by charge compensation, of which chromaticity coordinates (CIE) are x=0.66 and y=0.33. Three approaches to charge compensation are investigated, namely (a) 3Ca2+/Sr2+→2Eu3+/Gd3++vacancy, (b) 2Ca2+/Sr2+→Eu3+/Gd3++M+(M+ is a monovalent cation like Li+, Na+ and K+ employed as a charge compensator) and (c) Ca2+/Sr2+→Eu3+/Gd3++N (N is a monovalent anion like F, Cl, Br and I employed as charge compensation ions). Through photoluminescent spectra analyzing the radiative and non-radiative relaxation mechanisms of luminescent system are obtained. Under 20 mA forward-bias current, one red-emitting LED is made by combining 390-405 nm-emitting LED chip and the phosphor. The red-emitting phosphor has broad prospects in LED application field.  相似文献   

11.
YVO4:Eu3+-based red-emitting phosphors with the compositions of Y0.95−xVO4:0.05Eu3+,xBi3+ (x=0.01, 0.03, 0.05, 0.07 and 0.09) and Y0.90(V1−zPz)O4:0.05Eu3+,0.05Bi3+ (z=0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were synthesized by the high temperature solid-state method. The as-prepared phosphors have the similar tetragonal phase structure and their morphologies varied with the relative content ratio of V to P. The photoluminescence spectra for the as-synthesized phosphors show that a dominant red emission line at around 619 nm, which is due to the Eu3+ electric dipole transition of 5D0-7F2, is observed under different excitation wavelengths (254 and 365 nm). Further, the emission intensities of 5D0-7F2 transition upon 365 nm excitation increase sharply owing to the Bi3+ doping. Energy transfer process, luminescent lifetime and quantum efficiency for the selected Y0.90(V1−yPy)O4:0.05Eu3+,xBi3+phosphors were also studied in detail.  相似文献   

12.
The photoluminescence of Tb3+ doped M and M′ type gadolinium orthotantalate Gd1−xTbxTaO4 (0.01≤x≤0.20) was investigated under ultraviolet and vacuum ultraviolet excitation. For the samples of Gd1−xTbxTaO4 with different crystallographic structures, emission spectra were the same in addition to intensity; the optimal concentration for Tb3+ was about 10 mol % in M type Gd1−xTbxTaO4 but 5 mol % in M′ type Gd1−xTbxTaO4. These differences could be corresponding with the difference in structures. In addition, compared to commercial Zn2SiO4: Mn2+, the integrated intensity of M and M′ type GdTaO4: Tb3+ could reach 67% and 85%, respectively, of that at 147 nm excitation, which indicates that GdTaO4: Tb3+ would be a promising vacuum ultraviolet phosphor for application in PDP and Hg-free lamp.  相似文献   

13.
The structural and luminescence properties of Lu x Y1 ? x BO3 solid solutions doped with Ce3+ or Eu+3 have been investigated. It has been found that the solid solutions crystallize in the vaterite phase with a lutetium concentration x < 0.5. For a higher lutetium concentration x, the solid solutions contain an additional calcite phase with a content less than 5 wt %. The luminescence spectra are characterized by intensive impurity emission under excitation with the synchrotron radiation in the X-ray and ultraviolet spectral ranges. It has been shown that, as the lutetium concentration x in the Lu x Y1 ? x BO3: Ce3+ solid solutions increases, the emission intensity smoothly decreases, which is associated with a gradual shift of the Ce3+ 5d(1) level toward the bottom of the conduction band, as well as with a decrease in the band gap. It has been established that, in the Lu x Y1 ? x BO3: Eu3+ solid solutions with intermediate concentrations x, the efficiency of energy transfer to luminescence centers increases. This effect is explained by the limited spatial separation of electrons and holes in the solid solutions. It has been demonstrated that the calcite phase adversely affects the luminescence properties of the solid solutions.  相似文献   

14.
Delafossite-type oxides of CuTbyY1−yO2, CuEuyY1−yO2, CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 have been prepared by solid state reactions. The lattice-parameter dependence on the composition implies substitution of the Tb3+, Eu3+ and Ca2+ cations for the Y3+ site. Noticeable sharp emission lines due to the f-f transitions (5D47FJ, J=3-6) of Tb3+ or due to the f-f transitions (5D07FJ, J=0-4) of Eu3+ are observed at room temperature. Electrical conductivities of CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 are larger than those of CuTbyY1−yO2 and CuEuyY1−yO2, indicating the increase of the hole concentration caused by the substitution of Ca2+ for the Y3+ site. These results indicate the controllability of the luminescence and conductivity in CuCaxTbyY1−xyO2 and CuCaxEuyY1−xyO2 delafossite-type oxides by simultaneous substitution of the rare earth Tb3+ or Eu3+ cation and the Ca2+ cation for the Y3+ site.  相似文献   

15.
Resonant photoemission study of electronic structure of molecular beam epitaxy grown Eu1−xGdxTe layers without and with cover protected layer of Te were performed using synchrotron radiation. The analysis of the valence band and shallow core levels spectra of the clean surface of Eu1−xGdxTe obtained in situ under UHV conditions showed the existence of Eu2+ and Eu3+ ions in the layers. The trivalent europium ions mostly are located at the surface and its amount strongly depends on sample surface preparation conditions. The prolonged annealing of Eu1−xGdxTe layers covered with protected layer of Te leads to formation of clean surface of the sample not changing the stoichiometry of it and without the accumulation of Eu3+ ions at the surface region.  相似文献   

16.
In this paper, the Sr3Y2 (BO3)4:Eu3+ phosphor was synthesized by high temperature solid-state reaction method and the luminescence characteristics were investigated. The emission spectrum exhibits one strong red emission at 613nm corresponding to the electric dipole 5D0--7F2 transition of Eu3+ under 365nm excitation, this is because Eu3+ substituted for Y3+ occupied the non-centrosymmetric position in the crystal structure of Sr3Y2 (BO3)4. The excitation spectrum indicates that the phosphor can be effectively excited by ultraviolet (254nm, 365nm and 400nm) and blue (470nm) light. The effect of Eu3+ concentration on the red emission of Sr3Y2 (BO3)4:Eu3+ was measured, the result shows that the emission intensities increase with increasing Eu3+ concentration, then decrease. The Commission Internationale del'Eclairage chromaticity (x, y) of Sr3Y2(BO3)4:Eu3+ phosphor is (0.640,0.355) at 15 mol% Eu3+.  相似文献   

17.
Europium (Eu3+) doped YBa3B9O18 were synthesized by conventional solid state solidification methods. (Y1−xEux)Ba3B9O18 formed solid solutions in the range of x=0–1.0. The luminescence property measurements upon excitation in ultraviolet–visible range show well-known Eu3+ excitation and emission. The charge transfer excitation band of Eu3+ dominates the excitation spectra. The emission spectrum of Eu3+ ions consists mainly of several groups of lines in the 550–720 nm region, due to the transitions from the 5D0 level to the levels 7FJ (J=0, 1, 2, 3, 4) of Eu3+ ions. The dependence of luminescence intensity on Eu3+ concentration shows no concentration quenching for fully concentrated EuBa3B9O18. Eu3+ doped YBa3B9O18 are promising phosphors for applications in displays and optical devices.  相似文献   

18.
Nanosized barium aluminate materials was doped by divalent cations (Ca2+, Sr2+) and Eu2+ having nominal compositions Ba1−xMxAl12O19:Eu (M=Ca and Sr) (x=0.1-0.5), were synthesized by the combustion method. These phosphors were characterized by XRD, scanning electron microscopy-energy-dispersive spectrometry (SEM-EDS) and photoluminescence measurement. The photoluminescence characterization showed the presence of Eu ion in divalent form which gave emission bands peaking at 444 nm for the 320 nm excitation (solid-state lighting excitation), while for 254 nm it gave the same emission wavelength of low intensity (1.5 times) compared to 320 nm excitation. It was also observed that alkaline earth metal (Ca2+ and Sr2+) dopants increase the intensity of Eu2+ ion in BaAl12O19 lattice, thus this phosphor may be useful for solid-state lighting.  相似文献   

19.
This work reports a systematic study on bridging between structure and optimum luminescence for Ce1?xGdxF3:Eu3+ nanoparticles. It is found that all Ce1?xGdxF3:Eu3+ nanoparticles were nearly monodispersed, showing average grain diameter of 30–35 nm. Regardless of the dopant level, all nanocrystals crystallized in a single hexagonal phase. With increasing Gd3+ content, the lattice dimension for Ce1?xGdxF3:Eu3+ linearly decreased, which was followed by the highly distorted lattice symmetry surrounding Eu3+. The consequence of the structural modification is that the color purity was significantly improved. Furthermore, the excitation energy of Ce3+ in the ultraviolet range was efficiently transferred to Eu3+ ions via the sensitizer Gd3+, which significantly enhanced the red emission and showed a maximized quantum efficiency of 59.7%.  相似文献   

20.
The luminescence properties of polyphosphates NaEu x Gd(1?x)(PO3)4 (x = 0–1.00) and the energy transfer from Gd3+ to Eu3+ were studied. In undoped NaGd(PO3)4 sample, the photon cascade emission of Gd3+ was observed under 8S7/26GJ excitation (201 nm) in which the emission of a red photon due to 6GJ6PJ transition is followed by an ultraviolet photon emission due to 6PJ8S7/2 transition. When part of Gd3+ ions in the host NaGd(PO3)4 were substituted by Eu3+ ions, the NaGd(PO3)4:Eu3+ sample showed intensive red emission under 172-nm vacuum-ultraviolet (VUV) excitation which is suitable for mercury-free fluorescent lamps and plasma display panel applications. Based on the VUV–visible spectroscopic characteristics and the luminescence decay properties of NaGd(PO3)4:Eu3+, it was found that the quantum cutting by a two-step energy transfer from Gd3+ to Eu3+ can improve the red emission of Eu3+ ions under VUV excitation but only a part of the excitation energy in the excited 6PJ states within Gd3+ ions can be transferred to Eu3+ ions for its red emission, and the nonradiative energy transfer efficiencies from the excited 6PJ states within Gd3+ to Eu3+ were calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号