首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental results are presented on laser-assisted fragmentation of gold-containing nanoparticles suspended in liquids (either ethanol or water). Two kinds of nanoparticles are considered: (i) elongated Au nanorods synthesized by laser ablation of a gold target immersed in liquid phase; (ii) gold-covered NiCo nanorods with high aspect ratio (θ ∼ 10) synthesized by wet chemistry processes. The shape selectivity induced by laser fragmentation of these nanorods is gained via tuning the wavelength of laser radiation into different parts of the spectrum of their plasmon resonance corresponding to different aspect ratios θ. Fragmentation is performed using three laser wavelengths, involving a Cu vapour laser (510 and 578 nm) and a Nd:YAG (1064 nm). Nanoparticles are characterized by UV-vis spectrometry, Transmission Electron Microscopy (TEM). The effect of laser pulse duration (nanosecond against picosecond range) is also studied in the case of fragmentation with an IR laser radiation.  相似文献   

2.
Di-hadron correlation measurements have been used to probe di-jet production in heavy ion collisions at RHIC. A strong suppression of the away-side high-p T yield in these measurements is direct evidence that high-p T partons lose energy as they traverse the strongly interacting medium. However, since the momentum of the trigger particle is not a good measure of the jet energy, azimuthal di-hadron correlations have limited sensitivity to the shape of the fragmentation function. We explore the possibility to better constrain the initial parton energy by using clusters of multiple high-p T hadrons in a narrow cone as the ‘trigger particle’ in the azimuthal correlation analysis. We present first results from this analysis of multi-hadron triggered correlated yields in Au+Au collisions at $ \sqrt {s_{NN} } $ \sqrt {s_{NN} } = 200 GeV from STAR. The results are compared with measurements in d + Au collisions and Pythia calculations, and the implications for energy loss and jet fragmentation are discussed.  相似文献   

3.
Laser exposure of suspensions of nanoparticles in liquids leads to excitation of high energy levels in both liquid and nanoparticle material. The emission spectrum of the colloidal solution under exposure of a suspension metallic nanoparticles in water to radiation of a Nd:YAG laser of a picosecond range of pulse duration is discussed. Excitation of nuclear energy levels and neutron release is experimentally studied on the model system of transmutation of Hg into Au that occurs under exposure of Hg nanodrops suspended in D2O. The proposed mechanism involves: (i) emission of X-ray photons by Hg nanoparticles upon laser exposure, leading to neutron release from D2O, (ii) initiation of Hg → Au transmutation by the capture of neutrons. The effect of transmutation is more pronounced using 196Hg isotope instead of Hg of natural isotope composition. The influence of laser pulse duration on the degree of transmutation (from fs through ns range) is discussed.  相似文献   

4.
In the second part of the article, the subtractive processes—laser etching and cutting—in the presence of liquid water will be reviewed; but the rarely used methods of water assisted/underwater laser processing, such as welding, silicon wafer breaking, surface modification of polymers, pulsed laser deposition, particle formation and water mask defined microstructures fabrication, will also be described. Etching and cutting under water provide better tolerances and smaller heat-affected zone widths and avoid the re-deposition of debris. Irradiation under water results in increased wetting of fluoropolymers, and laser ablation in water vapor provides deposition of highly crystalline hydroxyapatite coatings. Laser irradiation of solid targets in water has been used to fabricate Ag, Au, Ni, Cu and carbon nanoparticles. The results of an original study on the formation of free-standing high aspect ratio Pb(ZrxTi1−x)O3 microplates fabricated by laser irradiation of Pb(ZrxTi1−x)O3 ceramics in water are also reported. The platelets were up to 60 μm in diameter and 50–160 nm in thickness. The use of neutral liquids other than water and some medical applications of underwater/water-assisted laser light driven processes will also be briefly reviewed.  相似文献   

5.
We review the di-hadron correlation results from RHIC. A consistent physical picture was constructed based on the correlation landscape in p T , Δφ, Δη and particle species. We show that the data are consistent with competition between fragmentation of survived jets and response of the medium to quenched jets. At intermediate p T where the medium response are important, a large fraction of trigger hadrons do not come from jet fragmentation. We argue that these hadrons can strongly influence the interpretation of the low p T correlation data. We demonstrate this point through a simple geometrical jet absorption model simulation. The model shows that the correlation between medium response hadrons dominates the pair yield and mimics the double hump structure of the away-side Δφ distribution at low p T . This correlation was also shown to lead to complications in interpreting the results on reaction plane dependence and three particle correlations. Finally, we briefly discuss several related experimental issues which are important for proper interpretations of the experimental data.  相似文献   

6.
Random fiber laser is obtained by end pumping a hollow optical fiber (HOF) filled with a dispersive solution of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles and laser dye pyrromethene 597 (PM597) in carbon disulfide (CS2), in which the concentration is 1.5×10?2 M for PM597 and 18.5 wt% for POSS, respectively. It is found that the pump light at the one end of the liquid core optical fiber (LCOF) can pass the whole length of LCOF because the POSS nanoparticles were dispersed in CS2 at a molecular level (1–3 nm) with high stability and without sedimentation. Above the threshold pump energy (~0.81 mJ) the random fiber laser appears coherent and resonant feedback multimode lasing in the weakly scattering system. For the LCOF containing PM597 with the same concentration and no POSS nanoparticles, there occurs only ASE that can be observed under the same experimental condition.  相似文献   

7.
The ζ‐potential and hydrodynamic size (dh) of nanoparticles (NPs) are systematically controlled by capping gold NPs (AuNPs) with polymers having different charges and treating them in NaCl solutions of diverse concentrations. Interactions between AuNPs in hydrogel are caused by chemical reactions induced by 1,4‐dithiothreitol. The effect of ζ‐potential is clear, as negatively charged AuNPs can be aggregated in neutral agarose gel, but the amount of aggregation is significantly affected by the magnitude of the negative surface charge on the AuNPs. However, all positively charged AuNPs show negligible aggregation in agarose gel with slightly negative polarity. The effect of dh on AuNP aggregation is different from that of ζ‐potential. Although AuNPs with small dh generally show more aggregation than those with large dh, the amount of AuNP capping layer is critical. Thus, the amount of polymer present on NP surface needs to be considered to investigate the effect of dh on AuNP aggregation. Through extended Derjaguin, Landau, Verwey, Overbeek (XDLVO) theory, it is shown that the charges of the AuNPs and the hydrogel, as well as the dh of the NPs, are related to electrostatic repulsion and steric hindrance, which affect AuNP aggregation in hydrogel.  相似文献   

8.
The rotational population distribution in a free molecular jet of ethylene, C2H4, is found to be thermal over a range of distances below the nozzle (z/d=0.5–13.2, nozzle diameter d=0.50 mm). Results for on-axis rotational temperature, number density and flow velocity are presented. The average number of gas-kinetic collisions experienced by any molecule in travelling some distance along the jet axis is calculated.  相似文献   

9.
The possibility of synthesizing binary oxides nanoparticles in a nano-scaled form by laser liquid solid interaction using a NdYAG “1.064 μm” as an irradiating laser source is reported. The case of MoO3−δ is emphasized. Furthermore, it is demonstrated that the Mo–O electronic valence can be controlled through the coupling effects of oxygen enriched nature of the used coating liquid layer, namely pure H2O or H2O2 and the laser beam fluence. Dark blue hydrated molybdic pentoxide Mo2O5·xH2O and yellow molybdenum trioxide MoO3 nano-suspensions were reproducibly synthesized with hydrogen peroxide and water, respectively, at a relatively high ablation rate. The average size of the molybdenum trioxide nanoparticles was about <ϕ>~8 nm, slightly larger than the molybdic pentoxide ones “<ϕ>~6.2 nm”.  相似文献   

10.
Triblock copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) has been used to synthesize gold nanoparticles from hydrogen tetrachloroaureate (III) hydrate (HAuCl4·3H2O) salt in aqueous solution at room temperature. Measurements were performed using the triblock copolymer Pluronic P85 (EO26PO39EO26) at a fixed concentration (1 wt%) mixed with varying HAuCl4·3H2O concentration in the range of 0.001 to 0.1 wt%. The surface plasmon resonance (SPR) band in UV-visible absorption spectra confirmed the formation of the gold nanoparticles. The maximum yield of the nanoparticles was found at 0.005 wt% of the salt solution. Small-angle neutron scattering (SANS) does not show any significant change in the scattering profile in these suspensions of the nanoparticles. A similar behavior was also observed in dynamic light scattering (DLS) experiments where autocorrelation function was found to be independent of the salt concentration. This can be understood since a high-block copolymer-to-gold ion ratio (r ~ 22) is required in the reduction reaction to produce gold particles. As a result, a very small fraction of the block copolymers were associated with the gold nanoparticles, and hence lead to a very low yield. Both SANS and DLS basically see the micelles of most of these block copolymers, which are not associated with nanoparticles. Based on this explanation, a step-addition method was used to enhance the yield of gold nanoparticles by manifold, where the gold salt is added in small steps to maintain higher value of r (>22), and therefore continuous formation of nanoparticles.  相似文献   

11.
The nature of a jet’s fragmentation in heavy-ion collisions has the potential to cast light on the mechanism of jet quenching. However, the presence of the huge underlying event complicates the reconstruction of the jet fragmentation function as a function of the momentum fraction z of hadrons in the jet. Here we propose the use of moments of the fragmentation function. These quantities appear to be as sensitive to quenching modifications as the fragmentation function directly in z. We show that they are amenable to background subtraction using the same jet-area-based techniques proposed in the past for jet p t ’s. Furthermore, complications due to correlations between background-fluctuation contributions to the jet’s p t and to its particle content are easily corrected for.  相似文献   

12.
Monometallic Pt and Rh and bimetallic PtRh catalysts with a highly dispersed noble metal weight loading of ca. 1 wt% were produced via the direct deposition of nanoparticles on different SiO2 supports by means of pulsed ultra-violet (248 nm) excimer laser ablation of Pt, Rh bulk metal and PtRh alloy targets. Backscattered electron microscopy (BSE), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) were employed to characterize the deposited nanoparticles, which were found to exhibit narrow size distribution centred around 2.5 nm. The catalytic activities for lean NO x reduction of the monometallic and bimetallic catalyst samples were investigated in a flow reactor setup in the temperature range 100–400°C using a test gas mixture representative of oxygen rich diesel engine exhaust gas. For comparison a Rh/SiO2 reference catalyst prepared by a conventional impregnation method was also tested. Further experiments were performed in which PtRh nanoparticles were deposited on a Rh/SiO2 reference catalyst sample to study the possibility for controlled modification of its activity. The catalytic activity measurements revealed that among the samples solely prepared by laser deposition the PtRh–SiO2 nanoparticle catalyst showed the highest activity for NO x reduction at low temperatures 100–300°C. In addition, it could be demonstrated that the initially low NO x reduction activity and the N2 selectivity of the Rh/SiO2 reference catalyst sample for temperatures below 250°C can be enhanced by post laser deposition of PtRh nanoparticles.  相似文献   

13.
The cyclohexane solution of TTA (trifluorothenoyl-acetone), phen (8-hydroxylquinoline) and PS (polystyrene), the ethyl acetate solution of TTA, phen and PMMA (polymethyl methacrylate) were used as flowing liquid, the coordinated Eu2O3/polymer hybrid colloids were successively produced by focused pulsed laser ablation of Eu2O3 target in interface of solid and flowing liquid. As solvent in the hybrid colloids has volatilized, the coordinated Eu2O3/polymer hybrid films were obtained. The hybrid colloids and films were characterized by TEM, UV-vis spectrum, fluorescence spectrum, TG-FTIR and X-ray photoelectron spectrum. The results show the coordinated Eu2O3 nanoparticles with average size of less than 20 nm are surrounded by the three-dimensional network and are properly incorporated into the PMMA and PS matrix, the hybrid films can emit intense red light under ultraviolet radiation, and their emission fluorescence spectra display same characteristic emission peaks of Eu3+ ions. The Eu2O3 hybrid films have better thermo stability than the related pure polymers because of strong interaction between surface europium ions of the nanoparticles and polymer. Because the coordinated Eu2O3 nanoparticles were wrapped by polymer, they have higher chemical stability than the related europium complex.  相似文献   

14.
Laser ablation of a silver (Ag) and/or gold (Au) target was performed in liquid ammonia (l-NH3) at 233 K using nanosecond laser pulses of 1064, 532 and 355 nm wavelengths. An “in situ” monitoring of the ablation process by UV/vis/NIR spectroscopy has shown the evolution of the surface plasmon extinction band of silver or gold nanoparticles and thus confirmed their formation. While sols of Au nanoparticles in l-NH3 are quite stable in air, those of Ag nanoparticles undergo oxidation to Ag(I) complexes with NH3 ligands. On the other hand, formation of solvated electrons, namely of the (e)NH3 solvates, has not been unequivocally confirmed under the conditions of our laser ablation/nanoparticle fragmentation experiment, since only very weak vis/NIR spectral features of these solvates were observed with a low reproducibility. Reference experiments have shown that the well-known chemical production of these solvates is hindered by the presence of Ag and Au plates. Ag and Au targets can thus possibly act as electron scavengers in our ablation experiments.  相似文献   

15.
Femtosecond-laser spectroscopy is used to study the photoionization and photofragmentation of large neutral silicon clusters in a beam. Silicon clusters Sin with sizes up to n≈6000, corresponding to nanoparticles with diameters up to 6 nm, are generated in a laser vaporization source. Nanosecond- and femtosecond-laser ionization are employed to characterize the free silicon nanoparticles. Excitation with intense femtosecond-laser pulses leads to prompt formation of doubly and triply charged Sin clusters. Additionally, strong fragmentation of charged clusters occurs by Coulomb explosion, resulting in high released kinetic energies. Multiply charged atoms up to Si4+ with initial kinetic energies in the range of 500 eV are observed for laser intensities of about 1013 W/cm2. Pump–probe spectroscopy yields decay times of the intermediate resonances of the nanoparticles. Received: 22 January 2000 / Published online: 7 August 2000  相似文献   

16.
Electrospraying and electrospinning processes were employed for the production of nanocomposite material of polymer nanofibers blended with nanoparticles. The diameter of polymer nanofibers made of PVC, PSU or nylon was smaller than 500 nm. Metal oxide nanoparticles of TiO2, MgO, and Al2O3 of the size 20–100 nm suspended in methanol were deposited on the polymer nanofibers. Three configurations of electrospray/electrospun nozzles used for the nanocomposite production were tested: 1. simultaneous electrospraying during the electrospinning process, 2. electrospraying onto the same rotating drum after the electrospinning is completed, and 3. electrospraying onto the electrospun mat removed from the drum and placed onto a heated table.  相似文献   

17.
The review of results on nanoparticles formation is presented under laser ablation of Ag, Au, and Cu-containing solid targets in liquid environments (H2O, C2H5OH, C2H4Cl2, etc.). X-ray diffractometry (XRD), UV-vis optical transmission spectrometry, and high resolution transmission electron microscopy (HRTEM) characterize the nanoparticles. The morphology of nanoparticles is studied as the function of both laser fluence and nature of the liquid. The possibility to control the shape of nanoparticles by ablation of an Au target by an interference pattern of two laser beams is demonstrated. Formation of alloyed Au-Ag and Ag-Cu nanoparticles is reported under laser exposure of a mixture of individual nanoparticles. The effect of internal segregation of brass nanoparticles is discussed due to their small lateral dimensions. The factors are discussed that determine the distribution function of particles size under laser ablation. The influence of laser parameters as well as the nature on the liquid on the properties of nanoparticles is elucidated.  相似文献   

18.
To synthesize low-cost, highly conductive metal nanoparticles for inkjet printing materials, we synthesized Sn–Ag bimetallic nanoparticles using a polyol process with poly(vinyl pyrrolidone). Because a surface oxidation layer forms on Sn nanoparticles, various compositions of Sn–xAg [x = 0, 20, 40, 60, 80, 100 (wt%)] nanoparticles were synthesized and characterized for the purpose of removing the β-Sn phase. The results of XPS, TEM, and XRD analyses confirm that the formation of a bimetallic phase, such as Ag4Sn or Ag3Sn, hinders the β-Sn phase and, consequently, leads to the removal of the surface oxidation layer. To measure the sheet resistance of various compositions of Sn–Ag nanoparticles, we made the ink that contains Sn–Ag by dispersing 10 wt% of Sn–Ag nanoparticles in methanol. The sheet resistance is decreased by the conductive Sn–Ag phases, such as the fcc, Ag4Sn, and Ag3Sn phases, but sharply increased by the low-conductive Sn nanoparticles and the surface oxidation layer on the Sn nanoparticles. The sheet resistance results confirm that 80Ag20Sn and 60Ag40Sn bimetallic nanoparticles are suitable candidates for inkjet printing materials.  相似文献   

19.
In this work, we report on the magnetic properties of nickel nanoparticles (NP) in a SiO2–C thin film matrix, prepared by a polymeric precursor method, with Ni content x in the 0–10 wt% range. Microstructural analyses of the films showed that the Ni NP are homogenously distributed in the SiO2–C matrix and have spherical shape with average diameter of ~10 nm. The magnetic properties reveal features of superparamagnetism with blocking temperatures T B ~ 10 K. The average diameter of the Ni NP, estimated from magnetization measurements, was found to be ~4 nm for the x = 3 wt% Ni sample, in excellent agreement with X-ray diffraction data. M versus H hysteresis loops indicated that the Ni NP are free from a surrounding oxide layer. We have also observed that coercivity (H C) develops appreciably below T B, and follows the H C ∝ [1 – (T/T B)0.5] relationship, a feature expected for randomly oriented and non-interacting nanoparticles. The extrapolation of H C to 0 K indicates that coercivity decreases with increasing x, suggesting that dipolar interactions may be relevant in films with x > 3 wt% Ni.  相似文献   

20.
We report time- and mass-resolved measurements on neutral particles emitted from polytetrafluoroethylene (PTFE) during exposure to 157-nm laser radiation at fluences where etching is observed. By comparing the time-of-flight signals over a range of masses, we conclude that (CF2) N fragments for N=1–6 are emitted directly from the surface in substantial quantities. In contrast, the monomer (N=2) is the principal product during irradiation at 248 nm, where thermal decomposition is important. The time-of-flight signals of all the (CF2) N fragments show fast components with kinetic energies on the order of an electron volt. These high kinetic energies are consistent with photochemical scission of the polymer backbone, where a fraction of the excitation energy is delivered to the fragment as kinetic energy. Although clean etching is observed under these conditions, the great majority of the mass removed from the target appears as much larger fragments that do not reach our detector. The nature of this material and its affect on the velocity distribution of the observed (CF2) N fragments is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号