首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let e_λ(x) be a Neumann eigenfunction with respect to the positive Laplacian A on a compact Riemannian manifold M with boundary such that △e_λ=λ~2e_λ in the interior of M and the normal derivative of e\ vanishes on the boundary of M.Let χλ be the unit band spectral projection operator associated with the Neumann Laplacian and f be a square integrable function on M.The authors show the following gradient estimate for χλf as λ≥1:‖▽χλ f‖∞≤C(λ‖χλ f‖∞+λ~(-1)‖△χλf‖∞),where C is a positive constant depending only on M,As a corollary,the authors obtain the gradient estimate of e_λ:For every λ≥1,it holds that ‖▽e_λ‖∞≤Cλ‖e_λ‖∞.  相似文献   

2.
本文.证明了,当n≥2时,Xat(K_n×K′_n)=2n;当p,q≥2时,Xat(C_(2p)×K_(2q))=2q 3,其中K_n×K′_n是两个不同标号完全图的积图,C_(2p)×K_(2q)是偶圈和偶阶完全图的积图.  相似文献   

3.
主要讨论局部域上的Gabor紧框架.首先,建立局部域上Gabor系{xm(bx)g(x-u(n)a)}m.n∈p构成L~2(K)上紧框架的特征.其次,给出Gabor系{X_m(bx)g(x-u(n)a)}_(m,n∈p)成为L~2(K)上标准正交基的充要条件.  相似文献   

4.
In this paper, we consider the initial-boundary value problem of the two-species chemotaxis Keller-Segel model
$$\begin{aligned} \textstyle\begin{cases} u_{t}=\Delta u-\chi_{1}\nabla \cdot (u\nabla w), &x\in \varOmega , \ t>0, \\ v_{t}=\Delta v-\chi_{2}\nabla \cdot (v\nabla w), &x\in \varOmega , \ t>0, \\ 0=\Delta w-\gamma w+\alpha_{1}u+\alpha_{2}v, &x\in \varOmega , \ t>0, \end{cases}\displaystyle \end{aligned}$$
where the parameters \(\chi_{1}\), \(\chi_{2}\), \(\alpha_{1}\), \(\alpha_{2}\), \(\gamma \) are positive constants, \(\varOmega \subset \mathbb{R}^{2}\) is a bounded domain with smooth boundary. We obtain the results for finite time blow-up and global bounded as follows: (1) For any fixed \(x_{0}\in \varOmega \), if \(\chi_{1}\alpha_{2}= \chi_{2}\alpha_{1}\), \(\int_{\varOmega }(u_{0}+v_{0})|x-x_{0}|^{2}dx\) is sufficiently small, and \(\int_{\varOmega }(u_{0}+v_{0})dx>\frac{8\pi ( \chi_{1}\alpha_{1}+\chi_{2}\alpha_{2})}{\chi_{1}\alpha_{1}\chi_{2} \alpha_{2}}\), then the nonradial solution of the two-species Keller-Segel model blows up in finite time. Moreover, if \(\varOmega \) is a convex domain, we find a lower bound for the blow-up time; (2) If \(\|u_{0}\|_{L^{1}(\varOmega )}\) and \(\|v_{0}\|_{L^{1}( \varOmega )}\) lie below some thresholds, respectively, then the solution exists globally and remains bounded.
  相似文献   

5.
关于图的星色数的一点注记   总被引:1,自引:0,他引:1  
A star coloring of an undirected graph G is a proper coloring of G such that no path of length 3 in G is bicolored.The star chromatic number of an undirected graph G,denoted by χs(G),is the smallest integer k for which G admits a star coloring with k colors.In this paper,we show that if G is a graph with maximum degree △,then χs(G) ≤ [7△3/2],which gets better bound than those of Fertin,Raspaud and Reed.  相似文献   

6.
$P_m\times K_n$的邻点可区别全色数   总被引:1,自引:0,他引:1       下载免费PDF全文
设 $G$ 是简单图. 设$f$是一个从$V(G)\cup E(G)$ 到$\{1, 2,\cdots, k\}$的映射. 对每个$v\in V(G)$, 令 $C_f (v)=\{f(v)\}\cup \{f(vw)|w\in V(G), vw\in E(G)\}$. 如果 $f$是$k$-正常全染色, 且对任意$u, v\in V(G), uv\in E(G)$, 有$C_f(u)\ne C_f(v)$, 那么称 $f$ 为图$G$的邻点可区别全染色(简称为$k$-AVDTC).数 $\chi_{at}(G)=\min\{k|G$ 有$k$-AVDTC\}称为图$G$的邻点可区别全色数.本文给出路$P_m$和完全图$K_n$ 的Cartesion积的邻点可区别全色数.  相似文献   

7.
设 $G$ 是一个简单图. 设$f$是从$V(G) \cup E(G)$到 $\{1, 2,\ldots, k\}$的一个映射.对任意的 $v\in V(G)$, 设$C_f(v)=\{f(v)\}\cup \{f (vw)|w\in V(G),vw\in E(G)\}$ . 如果 $f$ 是一个 $k$-正常全染色, 且对 $u, v\in V(G),uv\in E(G)$, 有 $C_f(u)\neq C_f(v)$, 那么称 $f$ 为$k$-邻点可区别全染色 (简记为$k$-$AVDTC$). 设  相似文献   

8.
In this paper, we consider the obstacle problem for the inhomogeneous p-Laplace equation
$ \text {div}\big(|\nabla u|^{p-2} \nabla u\big)=f\cdot \chi_{ \{u>0\},}相似文献   

9.
Let f(z) be a holomorphic cusp form of weight κ with respect to the full modular group SL2(Z). Let L(s, f) be the automorphic L-function associated with f(z) and χ be a Dirichlet character modulo q. In this paper, the authors prove that unconditionally for k =1/n with n ∈ N,and the result also holds for any real number 0 k 1 under the GRH for L(s, f ■χ).The authors also prove that under the GRH for L(s, f ■χ),for any real number k 0 and any large prime q.  相似文献   

10.
In this paper we are concerned with singular points of solutions to the unstable free boundary problem
$\Delta u = - \chi_{\{u>0\}} \quad\hbox{in } B_1.$\Delta u = - \chi_{\{u>0\}} \quad\hbox{in } B_1.  相似文献   

11.
图$G(V,E)$的全色数 $\chi_{t}(G)$就是将$V\bigcup E$分成彼此不相交的全独立分割集的最小个数。 如果任何两个$V\bigcup E$的全独立分割集的元素数目相差不超过1,那么 $V \bigcup E$的全独立分割集的最小个数就称为图$G$的均匀全色数,记为$\chi_{et}(G)$。 在本文中我们给出了当 $m \geq n \geq 3$ 时 $W_m\bigvee K_n$,$F_m \bigvee K_n$及$S_m \bigvee K_n$ 的均匀全色数.  相似文献   

12.
关于多重联图的均匀全染色   总被引:1,自引:0,他引:1       下载免费PDF全文
对一个正常的全染色满足各种颜色所染元素数(点或边)相差不超过1时,称为均匀全染色,其所用最少染色数称为均匀全色数.本文证明了关于多重联图的若干情况下的均匀全色数定理,得到了若干特殊多重联图的均匀全色数.  相似文献   

13.
In this paper we consider the following two-phase obstacle-problem-like equation in the unit half-ball
$\Delta u = \lambda_{+} \chi_{\{u >0 \}}-\lambda_{-} \chi_{\{u <0 \}},\quad \lambda_\pm >0 .$\Delta u = \lambda_{+} \chi_{\{u >0 \}}-\lambda_{-} \chi_{\{u <0 \}},\quad \lambda_\pm >0 .  相似文献   

14.
In this paper, we consider the limit cycles of a class of polynomial differential systems of the form $\dot{x}=-y, \hspace{0.2cm} \dot{y}=x-f(x)-g(x)y-h(x)y^{2}-l(x)y^{3},$ where $f(x)=\epsilon f_{1}(x)+\epsilon^{2}f_{2}(x),$ $g(x)=\epsilon g_{1}(x)+\epsilon^{2}g_{2}(x),$ $h(x)=\epsilon h_{1}(x)+\epsilon^{2}h_{2}(x)$ and $l(x)=\epsilon l_{1}(x)+\epsilon^{2}l_{2}(x)$ where $f_{k}(x),$ $g_{k}(x),$ $h_{k}(x)$ and $l_{k}(x)$ have degree $n_{1},$ $n_{2},$ $n_{3}$ and $n_{4},$ respectively for each $k=1,2,$ and $\varepsilon$ is a small parameter. We obtain the maximum number of limit cycles that bifurcate from the periodic orbits of the linear center $\dot{x}=-y,$ $\dot{y}=x$ using the averaging theory of first and second order.  相似文献   

15.
In this paper we introduce a two phase version of the well-known Quadrature Domain theory, which is a generalized (sub)mean value property for (sub)harmonic functions. In concrete terms, and after reformulation into its PDE version the problem boils down to finding solution to
$ - \Delta u = (\mu_+ - \lambda_+ )\chi_{\{u > 0\}} - (\mu_- - \lambda_- )\chi_{\{u < 0\}} ~~~{\rm in }~~~ {I\!\!R}^N. $ - \Delta u = (\mu_+ - \lambda_+ )\chi_{\{u > 0\}} - (\mu_- - \lambda_- )\chi_{\{u < 0\}} ~~~{\rm in }~~~ {I\!\!R}^N.  相似文献   

16.
Summary. Let $\widehat{\widehat T}_n$ and $\overline U_n$ denote the modified Chebyshev polynomials defined by $\widehat{\widehat T}_n (x) = {T_{2n + 1} \left(\sqrt{x + 3 \over 4} \right) \over \sqrt{x + 3 \over 4}}, \quad \overline U_{n}(x) = U_{n} \left({x + 1 \over 2}\right) \qquad (n \in \mathbb{N}_{0},\ x \in \mathbb{R}).$ For all $n \in \mathbb{N}_{0}$ define $\widehat{\widehat T}_{-(n + 1)} = \widehat{\widehat T}_n$ and $\overline U_{-(n + 2)} = - \overline U_n$, furthermore $\overline U_{-1} = 0$. In this paper, summation formulae for sums of type $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k}(\nu; x)$ are given, where $\bigl(\mathbf a_{\mathbf k}(\nu; x)\bigr)^{-1} = (-1)^k \cdot \Bigl( x \cdot \widehat{\widehat T}_{\left[k + 1 \over 2\right] - 1} (\nu) +\widehat{\widehat T}_{\left[k + 1 \over 2\right]}(\nu)\Bigr) \cdot \Bigl(x \cdot \overline U_{\left[k \over 2\right] - 1} (\nu) + \overline U_{\left[k \over 2\right]} (\nu)\Bigr)$ with real constants $ x, \nu $. The above sums will turn out to be telescope sums. They appear in connection with projective geometry. The directed euclidean measures of the line segments of a projective scale form a sequence of type $(\mathbf a_{\mathbf k} (\nu;x))_{k \in \mathbb{Z}}$ where $ \nu $ is the cross-ratio of the scale, and x is the ratio of two consecutive line segments once chosen. In case of hyperbolic $(\nu \in \mathbb{R} \setminus] - 3,1[)$ and parabolic $\nu = -3$ scales, the formula $\sum\limits^{+\infty}_{k = -\infty} \mathbf a_{\mathbf k} (\nu; x) = {\frac{1}{x - q_{{+}\atop(-)}}} - {\frac{1}{x - q_{{-}\atop(+)}}} \eqno (1)$ holds for $\nu > 1$ (resp. $\nu \leq - 3$), unless the scale is geometric, that is unless $x = q_+$ or $x = q_-$. By $q_{\pm} = {-(\nu + 1) \pm \sqrt{(\nu - 1)(\nu + 3)} \over 2}$ we denote the quotient of the associated geometric sequence.
  相似文献   

17.
On the real line, the Dunkl operators$$D_{\nu}(f)(x):=\frac{d f(x)}{dx} + (2\nu+1) \frac{f(x) - f(-x)}{2x}, ~~ \quad\forall \, x \in \mathbb{R}, ~ \forall \, \nu \ge -\tfrac{1}{2}$$are differential-difference operators associated with the reflection group $\mathbb{Z}_2$ on $\mathbb{R}$, and on the $\mathbb{R}^d$ the Dunkl operators $\big\{D_{k,j}\big\}_{j=1}^{d}$ are the differential-difference operators associated with the reflection group $\mathbb{Z}_2^d$ on $\mathbb{R}^{d}$.In this paper, in the setting $\mathbb{R}$ we show that $b \in BMO(\mathbb{R},dm_{\nu})$ if and only if the maximal commutator $M_{b,\nu}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R},dm_{\nu})$. Also in the setting $\mathbb{R}^{d}$ we show that $b \in BMO(\mathbb{R}^{d},h_{k}^{2}(x) dx)$ if and only if the maximal commutator $M_{b,k}$ is bounded on Orlicz spaces $L_{\Phi}(\mathbb{R}^{d},h_{k}^{2}(x) dx)$.  相似文献   

18.
Using the averaging theory of first and second order we study the maximum number of limit cycles of generalized Linard differential systems{x = y + εh_l~1(x) + ε~2h_l~2(x),y=-x- ε(f_n~1(x)y~(2p+1) + g_m~1(x)) + ∈~2(f_n~2(x)y~(2p+1) + g_m~2(x)),which bifurcate from the periodic orbits of the linear center x = y,y=-x,where ε is a small parameter.The polynomials h_l~1 and h_l~2 have degree l;f_n~1and f_n~2 have degree n;and g_m~1,g_m~2 have degree m.p ∈ N and[·]denotes the integer part function.  相似文献   

19.
Let ∈ :N → R be a parameter function satisfying the condition ∈(k) + k + 1 > 0and let T∈ :(0,1] →(0,1] be a transformation defined by T∈(x) =-1 +(k + 1)x1 + k-k∈x for x ∈(1k + 1,1k].Under the algorithm T∈,every x ∈(0,1] is attached an expansion,called generalized continued fraction(GCF∈) expansion with parameters by Schweiger.Define the sequence {kn(x)}n≥1of the partial quotients of x by k1(x) = ∈1/x∈ and kn(x) = k1(Tn-1∈(x)) for every n ≥ 2.Under the restriction-k-1 < ∈(k) <-k,define the set of non-recurring GCF∈expansions as F∈= {x ∈(0,1] :kn+1(x) > kn(x) for infinitely many n}.It has been proved by Schweiger that F∈has Lebesgue measure 0.In the present paper,we strengthen this result by showing that{dim H F∈≥12,when ∈(k) =-k-1 + ρ for a constant 0 < ρ < 1;1s+2≤ dimHF∈≤1s,when ∈(k) =-k-1 +1ksfor any s ≥ 1where dim H denotes the Hausdorff dimension.  相似文献   

20.
We prove the existence of positive solutions for the system$$\begin{align*}\begin{cases}-\Delta_{p} u =\lambda a(x){f(v)}{u^{-\alpha}},\qquad x\in \Omega,\\-\Delta_{q} v = \lambda b(x){g(u)}{v^{-\beta}},\qquad x\in \Omega,\\u = v =0, \qquad x\in\partial \Omega,\end{cases}\end{align*}$$where $\Delta_{r}z={\rm div}(|\nabla z|^{r-2}\nabla z)$, for $r>1$ denotes the r-Laplacian operator and $\lambda$ is a positive parameter, $\Omega$ is a bounded domain in $\mathbb{R}^{n}$, $n\geq1$ with sufficiently smooth boundary and $\alpha, \beta \in (0,1).$ Here $ a(x)$ and $ b(x)$ are $C^{1}$ sign-changingfunctions that maybe negative near the boundary and $f,g $ are $C^{1}$ nondecreasing functions, such that $f, g :\ [0,\infty)\to [0,\infty);$ $f(s)>0,$ $g(s)>0$ for $s> 0$, $\lim_{s\to\infty}g(s)=\infty$ and$$\lim_{s\to\infty}\frac{f(Mg(s)^{\frac{1}{q-1}})}{s^{p-1+\alpha}}=0,\qquad \forall M>0.$$We discuss the existence of positive weak solutions when $f$, $g$, $a(x)$ and $b(x)$ satisfy certain additional conditions. We employ the method of sub-supersolution to obtain our results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号