首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymeric membranes comprised of poly(amidoamine) (PAMAM) dendrimer immobilized in a poly(ethylene glycol) (PEG) network exhibit an excellent CO2 separation selectivity over H2. The CO2 permeability increases with PAMAM dendrimer concentration in the polymeric membrane and becomes 500 times greater than H2 permeability when the dendrimer content was 50 wt % at ambient conditions (5 kPa of CO2 partial pressure). However, the detailed morphology of the membrane has not been discussed. The immiscibility of PAMAM dendrimer and PEG matrix results in phase separation, which takes place in a couple of microns scale. Especially, laser scanning confocal microscope captures a 3D morphology of the polymeric blend. The obtained 3D reconstructions demonstrate a bicontinuous structure of PAMAM dendrimer‐rich and PEG‐rich phases, which indicates the presence of PAMAM dendrimer channel penetrating the polymeric membrane, and CO2 will preferentially pass through the dendrimer channel. In addition, Fourier transform of the 3D reconstructions indicates the presence of a periodic structure. An average size of the dendrimer domain calculated is 2–4 μm in proportion to PAMAM dendrimer concentration. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

2.
Microphase separation in poly(acrylonitrile–butadiene–styrene) (ABS) was studied as a function of the butadiene content and method of preparation with electron spin resonance (ESR) spectra of nitroxide spin probes. Results for the ABS polymers were evaluated by comparison with similar studies of the homopolymers polybutadiene (PB), polystyrene (PS), and polyacrylonitrile (PAN) and the copolymers poly(styrene‐co‐acrylonitrile) (SAN) and poly(styrene‐co‐butadiene) (SB). Two spin probes were selected for this study: 10‐doxylnonadecane (10DND) and 5‐doxyldecane (5DD). The probes varied in size and were selected because their hydrocarbon backbone made them compatible with the polymers studied. The ESR spectra were measured in the temperature range 120–420 K and were analyzed in terms of line shapes, line widths, and hyperfine splitting from the 14N nucleus; the appearance of more than one spectral component was taken as an indication of microphase separation. Only one spectral component was detected for 10DND in PB, PS, and PAN and in the copolymers SAN and SB. In contrast, two spectral components differing in their dynamic properties were detected for both probes in the three types of ABS samples studied and were assigned to spin probes located in butadiene‐rich domains (the fast component) and SAN‐rich domains (the slow component). The behavior of the fast component in ABS prepared by mass polymerization suggested that the low‐Tg (glass‐transition‐temperature) phase was almost pure PB. The corresponding phase in ABS prepared by emulsion grafting also contained styrene and acrylonitrile monomers. A redistribution of the spin probes on heating occurred with heating near the Tg of the SAN phase, suggesting that the ABS polymers as prepared were not in thermodynamic equilibrium. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 415–423, 2002; DOI 10.1002/polb.10109  相似文献   

3.
《先进技术聚合物》2018,29(2):825-834
In this study, poly(acrylonitrile‐co‐styrene/pyrrole) or poly(AN‐co‐ST/Py) copolymer was successfully synthesized using microwave preparation technique, and its comparison with the conventional heating method is investigated. Different polymerization factors affecting on the preparation conditions and conversion yield such as monomer concentration, comonomers ratio, initiator concentration, cosolvent ratio, cosolvent type, polymerization temperature, and polymerization time have a considerable effect on the conversion yield %, functional groups, and molecular weight. The copolymerization process was approved by Fourier transform infrared, thermogravimetric analysis, 1H NMR spectroscopy, and gel permeation chromatography. The formation of poly(AN‐co‐ST/Py) nanoparticles was confirmed by SEM, and their possible formation mechanisms were also proposed. The SEM images of poly(AN‐co‐ST/Py) prepared by the microwave method showed that the synthesized copolymer had spikes or rods with spherical structure of the produced copolymers than the poly(AN‐co‐ST/Py) nanoparticles prepared by the conventional heating method. Microwave method showed advantages for the produced copolymers compared to that prepared by conventional method, where it can offer a copolymer in short time, high yield, and more thermally stable copolymers, rather than conventional method.  相似文献   

4.
We recently presented electron spin resonance spectra of poly(acrylonitrile–butadiene–styrene) (ABS) doped with 10‐doxylnonadecane (10DND) and 5‐doxyldecane (5DD) as spin probes. The spectra were measured in three types of ABS that differed in their butadiene contents and methods of preparation. Results for the ABS polymers were evaluated by comparison with similar studies on the homopolymers polybutadiene (PB) and polystyrene (PS) and the copolymers poly(styrene‐co‐acrylonitrile) (SAN) and poly(styrene‐co‐butadiene) (SB). Only one spectral component was detected for 10DND in PB, PS, SAN, and SB. In contrast, two spectral components differing in their dynamic properties were detected in the ABS samples and were assigned to spin probes located in butadiene‐rich domains (the fast component) and SAN‐rich domains (the slow component). The presence of two spectral components was taken as an indication of microphase separation. In this study, we present details on the dynamics and microphase separation by simulating spectra of 10DND in ABS, PB, PS, and SAN. The simulations are based on a dynamic model defined by the components of the rotational diffusion tensor and the diffusion tilt angle between the symmetry axis of the rotational diffusion tensor and the direction of the nitrogen 2pz atomic orbital. The jump diffusion model led to good agreement with experimental spectra. In this model, the spin probe has a fixed orientation for a given time and then jumps instantaneously to a new orientation. The temperature variation of the rotational correlation time in PB and PS consisted of two dynamic regimes, with different activation energies. The transition temperature at which the change in dynamics occurs (Ttr) is 380 K for PS and 205 K for PB, essentially the same as the corresponding glass‐transition temperatures measured by differential scanning calorimetry. We suggest that Ttr is a better indicator of the glass transition than the temperature at which the total spectral width is 50 G, especially for large probes. The simulation program allowed the determination of the relative intensities of the fast and slow spectral components as a function of temperature; this information was used to clarify the redistribution of the probe above the glass transition of the SAN‐rich component in ABS systems. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 424–433, 2002; DOI 10.1002/polb.10110  相似文献   

5.
A novel poly(ethylene glycol)(PEG) analogue composed of aliphatic polyester backbone and pendant oligo(ethylene glycol) short chains is reported.The PEG analogue is a copolymer synthesized by ring-opening alternating copolymerization of succinic anhydride with 2-((2-(2-metho xyethoxy)ethoxy)methyl)oxirane.The structure of the copolymer was confirmed by ~1H NMR spectrum.The effects of the monomer feed ratio on the copolymerization were studied and the polymerization mechanism was given.The PEG analogue di...  相似文献   

6.
The flame retardancy mechanisms of a novel polyhedral oligomeric silsesquioxane containing 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO‐POSS) in polycarbonate/acrylonitrile‐butadiene‐styrene (PC/ABS) blends are discussed. The thermal stability of PC/ABS composites with different DOPO‐POSS loadings are investigated by TGA and the enhancement of the thermal stability could be found at high temperature range. Their fire behavior is tested by the LOI, UL‐94, and cone calorimeter. Excellent flame retardancy of PC/ABS composites have been discovered with 10 wt% DOPO‐POSS loading. TGA‐FTIR, FTIR, XPS, and SEM, respectively, are used to characterize the gaseous products and the condensed residue in thermal decomposition, and the micro‐structure of the chars from cone calorimeter tests. The decomposition of PC/ABS with 10 wt% DOPO‐POSS shows significant changes compared with PC/ABS by TGA, FTIR, TGA‐FTIR, and XPS analysis. The enhancement of the thermal‐oxidative stability of PC/ABS with DOPO‐POSS is attributed to the interaction between DOPO‐POSS and PC/ABS at high temperature, which might be the key for improvement of the flame retardancy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
《先进技术聚合物》2018,29(1):337-346
A biology‐inspired approach was utilized to functionalize hexagonal boron nitride (h‐BN), to enhance the interfacial interactions in acrylonitrile‐butadiene‐styrene copolymer/boron nitride (ABS/BN) composites. The poly (dopamine), poly (DOPA) layer, was formed on the surface of BN platelets via spontaneously oxidative self‐polymerization of DOPA in aqueous solution. The modified BN (named as mBN) coated with poly (DOPA) was mixed with ABS resin by melting. The strong interfacial interactions via π‐π stacking plus Van der Waals, both derived from by poly (DOPA), significantly promoted not only the homogeneous dispersion of h‐BN in the matrix, but also the effective interfacial stress transfer, leading to improve the impact strength of ABS/mBN even at slight mBN loadings. A high thermal conductivity of 0.501 W/(m·K) was obtained at 20 wt% mBN content, reaching 2.63 times of the value for pure ABS (0.176 W/(m·K)). Meanwhile, the ABS/mBN composites also exhibited an excellent electrical insulation property, which can be expected to be applied in the fields of thermal management and electrical enclosure.  相似文献   

8.
Poly(amidoamine) (PAMAM) dendrimers showed high CO2 separation properties and were successfully immobilized in a poly(ethylene glycol) (PEG) network upon photopolymerization of PEG dimethacrylate. The PAMAM dendrimer incorporation ratio was readily controlled, and a stable self-standing membrane containing up to 75 wt.% PAMAM dendrimer was obtained. The CO2 separation properties over smaller H2 were investigated by changing the PAMAM dendrimer content or generation and CO2 partial pressure (ΔPCO2ΔPCO2) under atmospheric conditions. Especially, a polymeric membrane containing 50 wt.% PAMAM dendrimer (0th generation) exhibited an excellent CO2/H2 selectivity of 500 with CO2 permeability of 2.74 × 10−14 m3(STP)m/(m2 s Pa) or 3.65 × 103 barrer (1 barrer = 7.5 × 10−18 m3(STP)m/(m2 s Pa)) when a mixture gas (CO2/H2: 5/95 by vol.) was fed at 25 °C and 100 kPa with 80% relative humidity. This polymeric materials are promising for a novel CO2 separation membrane.  相似文献   

9.
The synthesis of branched poly(ethylene glycol) (PEG) derivatives, namely star PEG and dendronized PEG, can be challenging and their purity can be difficult to ascertain using traditional techniques, such as NMR and GPC. Herein, the detailed characterization of these branched PEGs using MALDI-ToF MS was investigated in order to confirm their structural purity. In this light, mass spectrometry offers a number of advantages for polymer characterization, including the ability to get detailed structural data, such as end group masses, from microgram-scale samples. In addition, the ability to rapidly acquire data from crude reaction aliquots makes MALDI-ToF MS ideal for monitoring end group transformations.  相似文献   

10.
The nanostructure of a biomaterial surface has strong influence on cell behavior. The migration of cells on nanostructured surfaces, however, has not been investigated so far. In this study, we used PCL/PEG diblock copolymers as model surfaces to examine the effect of nanoislands on migration of different cells, including fibroblasts and endothelial cells. The water sliding angle of the substrates was measured. The cell migration rate was examined under a real-time optical microscope. It was found that a greater cell migration rate correlated with the smaller sliding angle of the substrate.  相似文献   

11.
We have determined the effect of temperature on intrinsic permeation properties of 6FDA-Durene/1,3-phenylenediamine (mPDA) 50/50 copolyimide dense film and fabricated high performance hollow fiber membranes of the copolyimide for CO2/CH4 separation. The hollow fiber membranes were wet-spun from a tertiary solution containing 6FDA-Durene/mPDA (PI), N-methyl-pyrrolidone (NMP) and tetrahydrofuran (THF) with a weight ratio of 20:50:30 at different shear rates within the spinneret. We observed the following facts: (1) the CO2/CH4 selectivity of the copolyimide dense film decreased significantly with an increase in temperature; (2) the performance of as-spun fibers was obviously influenced by the shear rate during spinning. For uncoated fibers, permeances of CH4 and CO2 decreased with increasing shear rate, while selectivity of CO2/CH4 sharply increased with shear rate until the shear rate reached 2169 s−1 and then the selectivity leveled off; (3) After silicone rubber coating, permeances of CH4 and CO2 decreased, the selectivity of CO2/CH4 was recovered to the inherent selectivity of its dense film. Both the permeances and selectivity with increasing shear rate followed their same trends as that before the coating; (4) there was an optimal shear rate at which a defect-free fiber with a selectivity of CO2/CH4 at 42.9 and permeance of CO2 at 53.3 GPU could be obtained after the coating; and (5) the pressure durability of the resultant hollow fiber membranes could reach 1000 psia at room temperature.  相似文献   

12.
An amine‐appended hierarchical Ca‐A zeolite that can selectively capture CO2 was synthesized and incorporated into inexpensive membrane polymers, in particular polyethylene oxide and Matrimid, to design mixed‐matrix membranes with high CO2/CH4 selectivities. Binary mixture permeation testing reveals that amine‐appended mesoporous Ca‐A is highly effective in improving CO2/CH4 selectivity of polymeric membranes. In particular, the CO2/CH4 selectivity of the polyethylene oxide membrane increases from 15 to 23 by incorporating 20 wt % amine‐appended Ca‐A zeolite. Furthermore, the formation of filler/polymer interfacial defects, which is typically found in glassy polymer‐zeolite pairs, is inhibited owing to the interaction between the amine groups on the external surface of zeolites and polymer chains. Our results suggest that the amine‐appended hierarchial Ca‐A, which was utilized in membrane fabrication for the first time, is a good filler material for fabricating a CO2‐selective mixed‐matrix membrane with defect‐free morphology.  相似文献   

13.
Poly(ethylene oxide)‐segmented polyurethanes (PEO‐PUs) and polyamides (PEO‐PAs) were prepared, and their morphology and CO2/N2 separation properties were investigated in comparison with those of PEO‐segmented polyimides (PEO‐PIs). The contents of the hard and soft segments in the soft and hard domains, WHS and WSH, respectively, were estimated from glass‐transition temperatures with the Fox equation. The phase separation of the PEO domains depended on the kind of hard‐segment polymer; that is, WHS was in the order PU > PA ≫ PI for a PEO block length (n) of 45–52. The larger WHS of PUs and PAs was due to hydrogen bonding between the oxygen of PEO and the NH group of urethane or amide. The CO2/N2 separation properties depended on the kind of hard‐segment polymer. Compared with PEO‐PIs, PEO‐PUs and PEO‐PA had much smaller CO2 permeabilities because of much smaller CO2 diffusion coefficients and somewhat smaller CO2 solubilities. PEO‐PUs also had a somewhat smaller permselectivity because of a smaller solubility selectivity. This was due to the larger WHS of PEO‐PUs and PEO‐PAs, that is, a greater contamination of PEO domains with hard urethane and amide units. For PEO‐PIs, with a decrease in n to 23 and 9, WHS became large and CO2 permeability decreased significantly, but the permselectivity was still at a high level of more than 50 at 35 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1707–1715, 2000  相似文献   

14.
Two types of poly(phenylene oxide) (PPO) membranes were prepared: one by chemical modification through sulfonation using chlorosulfonic acid and another by physical incorporation with a heteropolyacid (HPA), viz., phosphotungstic acid. These membranes were tested for the separation of CO2/CH4 mixtures. Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction techniques were used to confirm the modified structure of PPO as well as to understand its interactions with gaseous molecules. Scanning electron microscopy (SEM) was used to investigate the membrane morphology. Thermal stability of the modified polymers was assessed by differential scanning calorimetry (DSC), while the tensile strength was measured to evaluate their mechanical stability. Both chemical and physical modifications did not adversely affect the thermally and mechanical stabilities. Experiments with pure CO2 and CH4 gases showed that CO2 selectivity (27.2) for SPPO increased by a factor of 2.2, while the PPO–HPA membrane exhibited 1.7 times increase in selectivity with a reasonable permeability of 28.2 Barrer. An increase in flux was observed for the binary CO2/CH4 mixture permeation with an increasing feed concentration (5–40 mol%) of CO2. An enhancement in feed pressure from 5 to 40 kg/cm2 resulted in reduced CO2 permeability and selectivity due to the competitive sorption of methane. Both the modified PPO membranes were found to be promising for enrichment of methane despite exhibiting lower permeability values than the pristine PPO membrane.  相似文献   

15.
X‐ray photoelectron spectroscopy (XPS) has been used to characterize poly(3,4‐ethylene dioxythiophene)–poly(styrene sulfonate) (PEDT/PSS), one of the most common electrically conducting organic polymers. A correlation has been established between the composition, morphology, and polymerization mechanism, on the one hand, and the electric conductivity of PEDT/PSS, on the other hand. XPS has been used to identify interfacial reactions occurring at the polymer‐on‐ITO and polymer‐on‐glass interfaces, as well as chemical changes within the polymer blend induced by electrical stress and exposure to ultraviolet light. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2561–2583, 2003  相似文献   

16.
The mechanical, thermal and biodegradable properties of poly(d,l-lactide) (PDLLA), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(ethylene glycol) (PEG) blends were studied. The influence of PEG on the tensile and impact strengths of the blends was investigated. The results showed that the toughness and elongation at break of the PDLLA/PHBV (70/30) blends were greatly improved by the addition of PEG, and the notched Izod impact strength increased about 400% and the elongation at break increased from 2.1% to 237.0%. The thermal and degradation properties of the blends were investigated by differential scanning calorimeter (DSC) and thermogravimetric analyzer (TGA), it was found that the thermal stability of PHBV in the presence of PDLLA was improved. The degradation test showed that the addition of PEG could notably accelerate the biodegradation of the blends in the soil at room temperature, and the mass loss is about 20% after 30 days of the storage.  相似文献   

17.
采用二次生长法在多孔α-Al2O3载体上制备MFI型(ZSM-5和silicate-1)分子筛膜;通过XRD和SEM检测,证明所合成的分子筛膜为致密、交联和无取向的MFI型分子筛膜,厚度为5 μm;单组分气体渗透实验检测中,所制备样品膜的N2渗透量均小于10-11 mol/(m2·s·Pa),可认为其无缺陷;同时,考察了样品分子筛膜对H2S/CH4混合气的分离效果,在渗透压分别为0.3和0.5 MPa时,silicate-1分子筛膜的H2S/CH4的分离因子分别为1.99和4.44,而ZSM-5分子筛膜的CH4/H2S的分离因子分别为6.71和12.85。  相似文献   

18.
Fibrous poly(L-lactide) (PLLA) and bicomponent PLLA/poly(ethylene glycol) mats were prepared by electrospinning and then were coated with chitosan. The presence of chitosan coating was proved by scanning electron microscopy and by fluorescence microscopy. On contact with blood, the chitosan coating led to changes in erythrocyte shape and in their aggregation. The haemostatic activity of the mats increased with increasing chitosan content. Microbiological studies against Staphylococcus aureus revealed that the chitosan coating imparts antibacterial activity to the hybrid mats. The combined haemostatic and antibacterial activities render these novel materials suitable for wound-healing applications.  相似文献   

19.
We prepared surface-grafted polystyrene (PS) beads with comb-like poly(ethylene glycol) (PEG) chains. To accomplish this, conventional gel-type PS beads (35-75 microm) were treated with ozone gas to introduce hydroperoxide groups onto the surface. Using these hydroperoxide groups, poly(methyl methacrylate) (PMMA, Mn= 22,000-25,000) was grafted onto the surface of the PS beads. The ester groups of the grafted PMMA were reduced to hydroxyl groups with lithium aluminum hydride (LAH). After adding ethylene oxide (EO) to the hydroxyl groups, we obtained the PS-sg-PEG beads, which had a rugged surface and a diameter of 80-150 microm. We could obtain several kinds of the PS-sg-PEG beads by controlling the chain lengths of the grafted PMMA and the molecular weights of the PEG chains. The grafted PEG layer was about 30-50 microm thick, which was verified from the cross-sectioned views of the fluorescamine-labeled beads. These fluorescence images proved that the beads possessed a pellicular structure. Furthermore, we found that the surface-grafted PEG chains had the characteristic property of reducing non-specific protein adsorption on the beads.  相似文献   

20.
Temperature‐responsive hydrogels are one of the most widely studied types of stimuli‐responsive hydrogel systems. Their ability to transition between their swollen and collapsed states makes them attractive for controlled drug delivery, microfluidic devices, and biosensor applications. Recent work has shown that poly(ethylene glycol) (PEG) methacrylate polymers are temperature‐responsive and exhibit a wide range of lower critical solution temperatures based on the length of ethylene glycol units in the macromer chain. The addition of iron oxide nanoparticles into the hydrogel matrix can provide the ability to remotely heat the gels upon exposure to an alternating magnetic field (AMF). In this work, diethylene glycol (n = 2) methyl ether methacrylate and PEG (n = 4.5) methyl ether methacrylate copolymers were polymerized into hydrogels with 5 mol % PEG 600 (n = 13.6) dimethacrylate as the crosslinker along with 5 wt % iron oxide nanoparticles. Volumetric swelling studies were completed from 22 to 80 °C and confirmed the temperature‐responsive nature of the hydrogel systems. The ability of the gels to collapse in response to rapid temperature changes when exposed to an AMF was demonstrated showing their potential use in biomedical applications such as controlled drug delivery and hyperthermia therapy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3229–3235, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号