首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P Fouquet  P.K Day  G Witte   《Surface science》1998,400(1-3):140-154
The scattering of metastable 23S He atoms (He*) from cleaved NiO(100) as well as from clean and CO-covered Cu(100) surfaces has been studied. For these varied surfaces, which were characterized in situ by ground state He atom scattering, only broad He* angular distributions without any diffraction peaks were observed. For metastable He atoms scattered from the clean Cu(100) surface a total survival probability of 1×10−6 was determined. For NiO(100) and the CO-covered Cu(100) surface values of about 1×10−5 were obtained. Time-of-flight spectra of the surviving He* atoms revealed a substantial energetic broadening which increases with the substrate temperature. This behaviour indicates a large well depth for the He*–surface interaction potential and is discussed in terms of an enhanced multiphonon excitation and/or trapping probability upon the scattering.  相似文献   

2.

Specific features of the angular distributions of accelerated neutral nitrogen atoms at the grazing angles of incidence on the Al(001) crystal surface have been investigated by the computer simulation method. The N–Al pair interaction potential is approximated by the three-parameter Morse potential with the energydependent coefficients. The angular distributions of scattered atoms have been simulated taking into account the interaction between atoms and several atomic layers in the lattice and the atomic displacement during thermal oscillations. The parameters of the pair potential of accelerated neutral nitrogen atoms in the energy range from 10 to 70 keV have been determined according to the best agreement between the calculated dependence of the rainbow scattering angle on the energy of particles incident on the crystal surface and the available experimental data.

  相似文献   

3.
We have investigated the influence of translational excitation on the reactivity of atomic fluorine with the Si(100) surface via molecular dynamics simulations using a first-principles-derived interaction potential. Surface reactivity is contrasted for both clean and partially fluorinated surfaces with the results of previous simulations of F2 molecules impinging on Si(100) surfaces, indicating many similarities between the dynamics of F atoms and F2 molecules. Mechanisms for the reaction are proposed based on reactivity trends and scattered product energy and angular distributions, including evidence for the existence of a precursor-mediated adsorption pathway for low incident energy F atoms on partially fluorinated surfaces.  相似文献   

4.
The ion fractions η+ of low energy (5–10 keV) argon particles scattered from a Cu(100) surface, are measured with a time of flight spectrometer. Neutral as well as charged projectiles are used. The scattering angle θ is 30°. The results for different angles of incidence ψ and crystal directions are reported. For scattering in the 〈100〉 direction, with a ψ-value of 15° and a primary energy E0 of 5 and 10 keV, the ion fractions for the quasi single scattering peak, η+QS, are 1.5 and 6.1% respectively. When E0 is between 5 and 10 keV a reionization process with a constant reionization probability occurs during the violent interaction. This process, but also neutralization along the outgoing trajectory, determines η+QS. With ions as projectiles, an energy difference of about 16 eV is observed between the quasi single scattering peaks in the spectra of all scattered particles and of ions only. The ion fraction for the quasi double scattering peak, η+QD. depends largely upon E0, indicating that the efficiency of the reionization process increases with E0. A qualitative discussion of the data is given, using the reionization process and the interatomic neutralization processes along the trajectory of the scattered particles.  相似文献   

5.
The scattering of a hyperthermal Xe from a graphite (0001) surface has been studied using a molecular beam-surface scattering technique and molecular dynamics (MD) simulations. The angular and velocity distributions of scattered Xe atoms were measured at incidence energies from 0.45 to 3.5 eV, three incidence angles of 15°, 35° and 60° and the surface temperatures of 300 K and 550 K. The observed time-of-flight spectra exhibit a sharp velocity distribution with only one velocity component, which is ascribed to the direct inelastic scattering process. The angle-resolved energy ratios of the mean final translational energy over the mean incidence energy Ef/Ei agree well with those predicted based on the assumption of the conservation of the momentum parallel to the surface. The Hard-Cube model, where the mass of the cube is approximately 310 u, has reproduced the angle-resolved flux distributions of scattered Xe atoms. In the Hard-Cube model almost 80% of the normal component of the incidence translational energy is found to be lost in collision. The MD simulations reproduce well the experimental results by using the Brenner potential for intralayer C atoms and a Lennard-Jones potential for interlayer C–C pair interactions.  相似文献   

6.
The fraction of K and Na atoms initially trapped by the W(110) surface has been measured as a function of the incident energy (0.5–15 eV) and as a function of the incident angle. The trapping probability equals one at low incident energies (Ei ? 0.5 eV) and decreases with increasing energy. The measurements show an increase of trapping with increasing angle of incidence θi (measured from the surface normal). Simultaneously the desorption energies Qi were determined from the temperature dependence of the measured mean residence time on the W(110) surface. We obtained for K: Qi = 2.05 ± 0.02 eV, and for Na: Qi = 2.60 ± 0.04 eV.The trapping phenomenon at a solid surface was approximated in a theoretical way by calculating the in-plane trajectory of a projectile scattered from a diatomic surface-molecule. The important feature which showed up was the conversion of tangential to normal momentum of the projectile, and thus the inapplicability of cube models. As a function of the angle of incidence two regimes can be distinguished: at the smaller angles the scattering is governed by simultaneous interaction of the projectile with two neighbouring surface atoms, and at the higher angles of incidence the single particle interaction contributes most to the momentum transfer.  相似文献   

7.
Results of a study of energy losses and electron transfer processes for grazing scattering of fluorine atoms and anions scattering along different azimuthal orientations of the TiO2 crystal are presented. We observe strong variations in the overall intensity of scattered particles which are due to channelling effects. The energy losses do not show strong variations as a function of crystal azimuth except for the case of scattering along the (0 0 1) direction between the bridging oxygen atom rows, where we also observe differences in the energy losses of scattered ions and neutrals. We attribute this to the fact that larger F survival occurs for trajectories staying farther from the surface, when also the energy losses remain small. The overall characteristics of energy losses are attributed mainly to trajectory effects due to scattering in regions of different electron density. Measurements of the ratio of scattered ions to the total scattered flux, i.e. the ion fractions which reflect electron capture and loss processes, show that these are not the same for incident anions and atoms. A strong difference for scattering along the (0 0 1) direction is observed, where at low incident energies a strong survival of incident ions occurs. These results are tentatively discussed in terms of non resonant electron capture at lattice O sites and electron loss into the conduction band or by collisional detachment with bridging O atoms.  相似文献   

8.
Neutral hydrogen atoms with velocity selected thermal energies, have been scattered from KCl(001) cleavage planes in UHV. For cold crystal surfaces (TSF ? 170 K) even a small residual pressure of water resulted in an ordered monolayer coverage of the (001) plane. From this surface, diffraction has been observed with diffracted beams up to third order and characteristically varying intensities were observed and analysed in terms of a quantum mechanical rainbow scattering theory. Resonant transitions of atoms to bound states at the surface (“selective adsorption”) were observed and used to determine the interaction potential of hydrogen atoms with this water covered surface: first in terms of a Morse potential, second in terms of a C3z3-dependent attractive potential. The surface Debye-Waller factor has been measured for clean KCl(001), for the water covered (001) plane as well as for partially covered surfaces. The results are interpreted within a simple model.  相似文献   

9.
Fast atoms with keV energies are scattered under a grazing angle of incidence from a clean and flat LiF(001) surface. For scattering along low index azimuthal directions within the surface plane ("axial surface channeling") we observe pronounced peak structures in the angular distributions for scattered projectiles that are attributed to "supernumerary rainbows." This phenomenon can be understood in the framework of quantum scattering only and is observed here up to projectile energies of 20 keV. We demonstrate that the interaction potential and, in particular, its corrugation for fast atomic projectiles at surfaces can be derived with a high accuracy.  相似文献   

10.
Light atoms and molecules with energies from 300 eV to 25 keV are scattered under a grazing angle of incidence from a LiF(001) surface. For impact of neutral projectiles along low index directions for strings of atoms in the surface plane we observe a defined pattern of intensity spots in the angular distribution of reflected particles which is consistently described using concepts of diffraction theory and specific features of grazing scattering of atoms from insulator surfaces. Experimental results for scattering of H, D, 3He, and 4He atoms as well as H2 and D2 molecules can be unequivocally referred to atom diffraction with de Broglie wavelengths as low as about 0.001 Angstroms.  相似文献   

11.
The ion fractions η+ of low energy (5–10 keV) neon particles scattered from a Cu(100) surface are measured with a time of flight spectrometer. These fractions are obtained for neutral as well as charged projectiles and for different crystal directions. The scattering angle θ was 30°. For a primary energy E0 of 5 keV neutral projectiles have a value for η+ which is 30 times lower than for charged projectiles; these values are 0.15 and 4.5% respectively. For E0 = 10 keV the values of η+ are about the same (~22%). Energy differences up to 22 eV, depending on E0, are observed between the single scattering peaks in the ion spectra of charged and neutral projectiles but also between the single scattering peak in the spectra of all scattered particles and of ions, with ions as projectiles. A qualitative discussion of these data is given, involving charge transfer processes of noble gas particle and target atom. The data suggest that these neutralization processes can be described more adequately with interatomic neutralization processes along the trajectory than with Auger neutralization by conduction electrons.  相似文献   

12.
Experimental angular emission profiles of the M2,3M4,5M4,562 eV Cu Auger electrons from clean copper (100) and (111) surfaces in several azimuths are presented. A simple single scattering theory to account for elastic scattering of the Auger electrons by other ion cores in the solid is presented, and calculations have been performed to assess the importance of this process in contributing to the observed angular dependence. These calculations produce angular structure having a similar magnitude and temperature dependence to that observed experimentally, and some featural similarity in peak positions or shapes. It appears that elastic scattering is an important source of angular dependence, and that studies of adsorbed species on surfaces should provide a very sensitive method of surface structure determination.  相似文献   

13.
Abstract

A theoretical treatment of inelastic scattering of low energy particles from surfaces is developed which treats the regime of multiple quantum phonon exchange. Good agreement is obtained with recently measured multiphonon backgrounds in the scattering of He by alkali halide and metal surfaces over a large range of surface temperatures and incident conditions. The results show that the multiphonon scattered intensity can give important information on the particle-surface interaction potential.  相似文献   

14.
The technique of angle resolved mapping of scattering and recoiling imaging spectra (SARIS) combined with computer simulations is demonstrated to be a valuable tool for characterization of atomic collision events on surfaces. The energy distributions of scattered Kr and fast recoiled Pt atoms from a Pt(1 1 1) surface were measured as a function of exit angle. The use of a large area microchannel plate detector and time-of-flight techniques decreases the collection time and increases the number of detected trajectories above that of other designs. Classical ion trajectory simulations using the three-dimensional scattering and recoiling imaging code are used to simulate the kinematics of the scattering and recoiling particles. It is shown that SARIS mapping allows one to probe the kinematics of both scattered and recoiled particles, the probability for their occurrence in specific trajectories, their detection probabilities, and their threshold detection velocity. The measured and simulated energy distributions agree quantitatively if the detection efficiency is taken into account. The observed value of the threshold detection velocity for Pt atoms, νth=3.78(5)×104 m/s, is in good agreement with previous studies.  相似文献   

15.
The adsorption and desorption of O2 on a Pt(111) surface have been studied using molecular beam/surface scattering techniques, in combination with AES and LEED for surface characterization. Dissociative adsorption occurs with an initial sticking probability which decreases from 0.06 at 300 K to 0.025 at 600 K. These results indicate that adsorption occurs through a weakly-held state, which is also supported by a diffuse fraction seen in the angular distribution of scattered O2 flux. Predominately specular scattering, however, indicates that failure to stick is largely related to failure to accommodate in the molecular adsorption state. Thermal desorption results can be fit by a desorption rate constant with pre-exponential νd = 2.4 × 10?2 cm2 s?1 and activation energy ED which decreases from 51 to 42 kcal/mole?1 with increasing coverage. A forward peaking of the angular distribution of desorbing O2 flux suggests that part of the adsorbed oxygen atoms combine and are ejected from the surface without fully accomodating in the molecular adsorption state. A slight dependance of the dissociative sticking probability upon the angle of beam incidence further supports this contention.  相似文献   

16.
P.N. Ross  K.A. Gaugler 《Surface science》1982,122(1):L579-L584
We have observed that an electron beam of kinetic energy 100–200 eV is scattered from some transition metal surfaces like Ti, Fe and Ni with a strong resonant energy loss corresponding to the M2,3 core-level excitation. Because of the low kinetic energy, the scattering is principally from the surface atomic layer, and core-level spectroscopy of just the surface atoms is therefore possible. Chemisorption of oxygen on these transition metals caused substantial shifts in the M2,3 threshold energies which appear to be related to charge transfer bonding with the oxygen.  相似文献   

17.
TOF spectra of scattered primary and surface recoiled neutrals and ions for 3 keV Ar+ bombardment of clean La and Yb and H2, O2, and H2O saturated La surfaces are presented. The spectra are analyzed in terms of single (SS) and multiple (MS) scattering of the primary ions and surface recoiling (SR) of adsorbate atoms. Measurement of spectra of neutrals + ions and neutrals alone allows determination of scattered ion fractions Y. The Y values for the SS event are high for clean La (37%) and lower for adsorbate covered La (32% for H2, 13% for O2, and 8% for H2O); Yb exhibits a similar behavior, i.e. 16% for clean Yb and 5% for O2 + H2O covered Yb. Photon emission accompanying the scattering collision has been observed from clean La and Yb and adsorbate covered La. A preferential inelastic energy loss of 15 ± 3 eV for the SS event has been observed for scattered neutrals as opposed to ions for La and H2 saturated La at 135°. These results are interpreted within the models for Auger and resonant electronic charge exchange transitions during approach or departure of an ion with a surface and the electron promotions occuring during close atomic encounters where the electron shells are interpenetrating.  相似文献   

18.
The adsorption of gases on Ag(110) has been studied using inelastic He atom scattering. Vibrational spectra have been obtained for Kr, Xe, C2H6, C2H4, CH4, CF4, CHF3, CO2 and H2O. Spectra have also been obtained for multilayers of Xe (2 layers) and C2H6 (3 and 4 layers) where the energy changes move to lower values. The scattering from Kr and Xe can be shown to be dispersionless as has been previously found for these adsorbates on Cu(100) and Cu(110). The energy changes for Kr and Xe are smaller than on Cu surfaces and attempts were made to account for this based on an Einstein model of the adsorbed atoms in the surface holding potential.  相似文献   

19.
The sensitivity of the characteristics of low energy noble gas ion reflection from monocrystalline surfaces for thermal properties of the target atoms has been investigated by computer simulation. In addition the uncertainties in comparing experimental results with calculations, introduced by a not well-known interaction potential, have been examined. The calculations have been carried out for 6 keV Ar+ ions reflected from a vibrating Cu〈100〉 chain. To achieve the above presented object we varied the mean square value u2 and the correlation coefficients of the atomic thermal displacements. The used ion-atom interaction potential (a Thomas-Fermi potential in the Molière approximation) has been varied by changing the screening length aF. Under certain conditions the shape of the energy spectra of specularly reflected particles depends pronouncedly on both u2 and aF. The effects are the most pronounced for scattering angles between about 20° and 30°. The angular distribution shows also a distinct and simultaneous sensitivity for the used potential and the target-temperature. A most interesting feature is the occurrence of a QT peak at higher temperatures, resulting from quasi triple collisions from surface “thermal pit” structures. At a given scattering angle the cut-off temperature of this QT peak can be related to the mean square displacements of the involved atoms. This cut-off temperature appears to be (almost) independent from the used potential, allowing an estimation of u2. The intensity of the QS peak and the QD peak depend exclusively on the mean square differences of thermal displacements of neighbouring atoms. Correlated atomic displacements have some influence on the angular distributions and on the QT peak intensity. Possibilities to estimate model quantities are discussed briefly.  相似文献   

20.
Atom ejection from lattice sites at the Ni (111) and Ni (001) surfaces in the azimuthal direction toward the center of a lens consisting of two nearest neighboring atoms in the surface plane is calculated using a developed analytical three-dimensional model. The types of scattering of ejected atoms are classified in frames of the constructed model. It is found that the first and second ejection cones are observed in the sputtering pattern in the case of atom ejection from the Ni (111) surface and that the contribution of strongly blocked atoms to sputtering is considerable. The focusing of sputtered atoms at some angle from the surface normal is observed. A maximum of the polar angular distribution of sputtered atoms is shifted nonmonotonically as the energy increases. It is shown that the energy spent by the ejected atom on the recoiling of the lens atoms can be larger than that spent by this atom to overcome the potential barrier. It is found that small changes in the potential hardness and the binding energy at the magnetic phase transition can lead to a qualitative change in the ejection pattern. The expressions for the final ejection angle and energy in the case of Ni in the f-state are found in the form of an expansion in terms of two small parameters. As one passes from the case of atom ejection from the Ni (001) face to the case of atom ejection from the Au (001) face, the interaction cross section increases significantly because of an increase in the atomic number and the effects of blocking and focusing turn out to be considerable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号