首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove existence and numerical stability of numerical solutions of three fully discrete interior penalty discontinuous Galerkin methods for solving nonlinear parabolic equations. Under some appropriate regularity conditions, we give the l2(H1) and l(L2) error estimates of the fully discrete symmetric interior penalty discontinuous Galerkin–scheme with the implicit θ ‐schemes in time, which include backward Euler and Crank–Nicolson finite difference approximations. Our estimates are optimal with respect to the mesh size h. The theoretical results are confirmed by some numerical experiments. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

2.
A Discontinuous Galerkin method with interior penalties is presented for nonlinear Sobolev equations. A semi‐discrete and a family of fully‐discrete time approximate schemes are formulated. These schemes are symmetric. Hp‐version error estimates are analyzed for these schemes. For the semi‐discrete time scheme a priori L(H1) error estimate is derived and similarly, l(H1) and l2(H1) for the fully‐discrete time schemes. These results indicate that spatial rates in H1 and time truncation errors in L2 are optimal. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

3.
We consider the nonlinear parabolic partial differential equations. We construct a discontinuous Galerkin approximation using a penalty term and obtain an optimal L(L2) error estimate.  相似文献   

4.
A discontinuous Galerkin method with interior penalties is presented for nonlinear Sobolev equations. A semi-discrete and a family of Fully-discrete time approximate scheme are formulated. These schemes can be symmetric or nonsymmetric. Hp-version error estimates are analyzed for these schemes. Just because of a damping term ·(b(u)ut) included in Sobolev equation, which is the distinct character different from parabolic equation, special test functions are chosen to deal with this term. Finally, a priori L(H1) error estimate is derived for the semi-discrete time scheme and similarly, l(H1) and l2(H1) for the Fully-discrete time schemes. These results also indicate that spatial rates in H1 and time truncation errors in L2 are optimal.  相似文献   

5.
We obtain a computable lower bound on the value of the interior penalty parameters sufficient for the existence of a unique discontinuous Galerkin finite element approximation of a second order elliptic problem. The bound obtained is valid for meshes containing an arbitrary number of hanging nodes and elements of arbitrary nonuniform polynomial order. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

6.
The local discontinuous Galerkin method has been developed recently by Cockburn and Shu for convection‐dominated convection‐diffusion equations. In this article, we consider versions of this method with interior penalties for the numerical solution of transport equations, and derive a priori error estimates. We consider two interior penalty methods, one that penalizes jumps in the solution across interelement boundaries, and another that also penalizes jumps in the diffusive flux across such boundaries. For the first penalty method, we demonstrate convergence of order k in the L(L2) norm when polynomials of minimal degree k are used, and for the second penalty method, we demonstrate convergence of order k+1/2. Through a parabolic lift argument, we show improved convergence of order k+1/2 (k+1) in the L2(L2) norm for the first penalty method with a penalty parameter of order one (h?1). © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 545–564, 2001  相似文献   

7.
This article presents a complete discretization of a nonlinear Sobolev equation using space-time discontinuous Galerkin method that is discontinuous in time and continuous in space. The scheme is formulated by introducing the equivalent integral equation of the primal equation. The proposed scheme does not explicitly include the jump terms in time, which represent the discontinuity characteristics of approximate solution. And then the complexity of the theoretical analysis is reduced. The existence and uniqueness of the approximate solution and the stability of the scheme are proved. The optimalorder error estimates in L2(H1) and L2(L2) norms are derived. These estimates are valid under weak restrictions on the space-time mesh, namely, without the condition knch2, which is necessary in traditional space-time discontinuous Galerkin methods. Numerical experiments are presented to verify the theoretical results.  相似文献   

8.
In this paper, we derive a theoretical analysis of nonsymmetric interior penalty discontinuous Galerkin methods for solving the Cahn–Hilliard equation. We prove unconditional unique solvability of the discrete system and derive stability bounds with a generalized chemical energy density. Convergence of the method is obtained by optimal a priori error estimates. Our analysis is valid for both symmetric and nonsymmetric versions of the discontinuous Galerkin formulation.  相似文献   

9.
We consider the hp-version interior penalty discontinuous Galerkinfinite-element method (hp-DGFEM) for second-order linear reaction–diffusionequations. To the best of our knowledge, the sharpest knownerror bounds for the hp-DGFEM are due to Rivière et al.(1999,Comput. Geosci., 3, 337–360) and Houston et al.(2002,SIAM J. Numer. Anal., 99, 2133–2163). These are optimalwith respect to the meshsize h but suboptimal with respect tothe polynomial degree p by half an order of p. We present improvederror bounds in the energy norm, by introducing a new functionspace framework. More specifically, assuming that the solutionsbelong element-wise to an augmented Sobolev space, we deducefully hp-optimal error bounds.  相似文献   

10.
We prove the existence and uniqueness of a solution of a C0 Interior Penalty Discontinuous Galerkin (C0 IPDG) method for the numerical solution of a fourth‐order total variation flow problem that has been developed in part I of the paper. The proof relies on a nonlinear version of the Lax‐Milgram Lemma. It requires to establish that the nonlinear operator associated with the C0 IPDG approximation is Lipschitz continuous and strongly monotone on bounded sets of the underlying finite element space.  相似文献   

11.
Fully discrete discontinuous Galerkin methods with variable mesh- es in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discontinuous Galerkin methods indeed provide an efficient and viable alternative to the mixed finite element methods and nonconforming (plate) finite element methods for solving fourth order partial differential equations.

  相似文献   


12.
We consider the numerical solution of a fourth‐order total variation flow problem representing surface relaxation below the roughening temperature. Based on a regularization and scaling of the nonlinear fourth‐order parabolic equation, we perform an implicit discretization in time and a C0 Interior Penalty Discontinuous Galerkin (C0IPDG) discretization in space. The C0IPDG approximation can be derived from a mixed formulation involving numerical flux functions where an appropriate choice of the flux functions allows to eliminate the discrete dual variable. The fully discrete problem can be interpreted as a parameter dependent nonlinear system with the discrete time as a parameter. It is solved by a predictor corrector continuation strategy featuring an adaptive choice of the time step sizes. A documentation of numerical results is provided illustrating the performance of the C0IPDG method and the predictor corrector continuation strategy. The existence and uniqueness of a solution of the C0IPDG method will be shown in the second part of this paper.  相似文献   

13.
** Email: jingtang{at}lsec.cc.ac.cn*** Email: hermann{at}math.mun.ca In this paper we establish a posteriori error estimates forthe discontinuous Galerkin (DG) method applied to linear, semilinearand non-standard (non-linear) Volterra integro-differentialequations. We also present an analysis of the DG method withquadrature for the memory term. Numerical experiments basedon three integro-differential equations are used to illustratevarious aspects of the error analysis.  相似文献   

14.
H1‐Galerkin mixed finite element method combined with expanded mixed element method is discussed for nonlinear pseudo‐parabolic integro‐differential equations. We conduct theoretical analysis to study the existence and uniqueness of numerical solutions to the discrete scheme. A priori error estimates are derived for the unknown function, gradient function, and flux. Numerical example is presented to illustrate the effectiveness of the proposed scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

15.
In this paper,we discuss the local discontinuous Galerkin methods coupled with two specific explicitimplicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut=(a(U)Ux)x.The basic idea is to add and subtract two equal terms a0 Uxx the right-hand side of the partial differential equation,then to treat the term a0 Uxx implicitly and the other terms(a(U)Ux)x-a0 Uxx explicitly.We give stability analysis for the method on a simplified model by the aid of energy analysis,which gives a guidance for the choice of a0,i.e.,a0≥max{a(u)}/2 to ensure the unconditional stability of the first order and second order schemes.The optimal error estimate is also derived for the simplified model,and numerical experiments are given to demonstrate the stability,accuracy and performance of the schemes for nonlinear diffusion equations.  相似文献   

16.
This paper is devoted to a newly developed weak Galerkin finite element method with the stabilization term for a linear fourth order parabolic equation, where weakly defined Laplacian operator over discontinuous functions is introduced. Priori estimates are developed and analyzed in L2 and an H2 type norm for both semi‐discrete and fully discrete schemes. And finally, numerical examples are provided to confirm the theoretical results.  相似文献   

17.
The numerical solution of a parabolic equation with memory is considered. The equation is first discretized in time by means of the discontinuous Galerkin method with piecewise constant or piecewise linear approximating functions. The analysis presented allows variable time steps which, as will be shown, can then efficiently be selected to match singularities in the solution induced by singularities in the kernel of the memory term or by nonsmooth initial data. The combination with finite element discretization in space is also studied.

  相似文献   


18.
** Email: emmanuil.georgoulis{at}mcs.le.ac.uk*** Email: al{at}maths.strath.ac.uk We consider a variant of the hp-version interior penalty discontinuousGalerkin finite element method (IP-DGFEM) for second-order problemsof degenerate type. We do not assume uniform ellipticity ofthe diffusion tensor. Moreover, diffusion tensors of arbitraryform are covered in the theory presented. A new, refined recipefor the choice of the discontinuity-penalization parameter (thatis present in the formulation of the IP-DGFEM) is given. Makinguse of the recently introduced augmented Sobolev space framework,we prove an hp-optimal error bound in the energy norm and anh-optimal and slightly p-suboptimal (by only half an order ofp) bound in the L2 norm (the latter, for the symmetric versionof the IP-DGFEM), provided that the solution belongs to an augmentedSobolev space.  相似文献   

19.
We prove uniqueness of numerical solutions to nonlinear parabolic equations approximated by a fully implicit interior penalty discontinuous Galerkin (IPDG) method, with a mesh-independent constraint on time step.  相似文献   

20.
We develop the symmetric interior penalty discontinuous Galerkin (DG) method for the time-dependent Maxwell equations in second-order form. We derive optimal a priori error estimates in the energy norm for smooth solutions. We also consider the case of low-regularity solutions that have singularities in space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号