首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The cure behavior and properties of oligomeric bisphenol A‐based PEEK‐like phthalonitrile (PN) are thoroughly examined in this article. The resin is easily processed from the melt at a relatively low temperature (150–200 °C) and the monomer cure occurs in a controlled manner as a function of the amine content and processing thermal conditions. Dynamic mechanical measurements and thermogravimetric analysis show that the polymer properties improve as the maximum PN postcure temperature is increased to 415 °C. The effects of the amine and polymer postcure conditions on the flexural and tensile properties of the PN polymer are investigated. The mechanical properties of the polymer are maximized after postcuring to moderate temperatures (330–350 °C). The polymer exhibits an average flexural strength and tensile strength at break of 117 and 71 MPa, respectively. After oxidative aging at 302 °C for 100 h, the polymer retains excellent mechanical properties. The average flexural and tensile strength retention of the polymers are 81 and 75%, respectively. Microscale calorimetric measurements reveal that the flammability parameters of the oligomeric PN are low compared to other thermosets. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3769–3777  相似文献   

2.
Polystyrenes with different concentrations of side groups with cyano groups were prepared and complex dielectric constants were measured in the range of the glass transition temperature and the frequency range of 10–2–107 Hz.The GPC and DSC measurements showed that the molecular weight of these polystyrenes was about 10500 g/mole and the glass transition temperatures were 89.5°C for all samples.The dielectric relaxation spectra obtained for the side group polystyrene labels and also the chain-end polystyrene labels prepared before [9] were analyzed to find out the degree of coupling of the chain-end and side-group labels with the cooperative reorientation of the polymeric matrix. The analysis of the spectra was carried out using the analysis method developed by Mansour and Stoll [6].The results obtained showed that both end- and side-group labels are strongly coupled with the segmental reorientation and relax with relaxation times longer than that of the segments.The value of logf m = (logf m(label)) – logf m(matrix)) was obtained from the recently designed comparison diagram suggested by Mansour and Stoll [6, 14]. The value of logf m depends on the label length in the case of chain-end labels.It was surprising to find that the side groups relax slower than the segments by only 0.9 decades. These results obtained implied that the label relaxes through a multistep relaxation mechanism of the side and end groups and not through a diffusion mechanism of the whole chain. In addition, the effective lengths of the relaxing units were determined using the empirical equation obtained before in the case of rodlike molecules in polyisoprene [7].  相似文献   

3.
From high‐resolution dielectric spectroscopy measurements on 1,4‐polybutadiene (1,4‐PB), we show that in addition to the structural α‐relaxation and higher frequency secondary relaxations in the spectra, a nearly constant loss (NCL) is observed at shorter times/lower temperatures. The properties of this NCL are compared to those of another chemically similar polymer, 1,4‐polyisoprene. The secondary relaxations in 1,4‐PB include the well‐known Johari‐Goldstein (JG) β‐relaxation and two other higher‐frequency peaks. One of these, referred to as the γ‐relaxation, falls between the JG‐relaxation and the NCL. Seen previously by others, this γ‐relaxation in 1,4‐PB is not the JG‐process and bears no relation to the glass transition. At very low temperatures (<15 K), we confirm the existence of a very fast secondary relaxation, having a weak dielectric strength and an almost temperature‐invariant relaxation time. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 342–348, 2007  相似文献   

4.
Dielectric measurements were obtained on poly(propylene glycol) (molecular weight: 4000 Da) at pressures in excess of 1.2 GPa. The segmental (α process) and normal‐mode (α′ process) relaxations exhibited different pressure sensitivities of their relaxation strengths, as well as their relaxation times. Such results are contrary to previous reports, and (at least for the dielectric strength) can be ascribed to the capacity for intermolecular hydrogen‐bond formation in this material. With equation‐of‐state measurements, the relative contributions of volume and thermal energy to the α‐relaxation times were quantified. Similar to other H‐bonded liquids, temperature is the more dominant control variable, although the effect of volume is not negligible. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3047–3052, 2003  相似文献   

5.
Semi‐interpenetrating polymer networks (semi‐IPNs) were prepared from linear polyurethane (PUR) and polycyanurate (PCN) networks. Wide‐angle X‐ray scattering measurements showed that the IPNs were amorphous, and differential scanning calorimetry and small‐angle X‐ray scattering measurements suggested that they were macroscopically homogeneous. Here we report the results of detailed studies of the molecular mobility in IPNs with PUR contents greater than or equal to 50% via broadband dielectric relaxation spectroscopy (10−2–109 Hz, 210–420 K) and thermally stimulated depolarization current techniques (77–320 K). Both techniques gave a single α relaxation in the IPNs, shifting to higher temperatures in isochronal plots with increasing PCN content, and provided measures for the glass‐transition temperature (Tg) close to and following the calorimetric Tg. The dielectric response in the IPNs was dominated by PUR. The segmental α relaxation, associated with the glass transition and, to a lesser extent, the local secondary β and γ relaxations were analyzed in detail with respect to the timescale, the shape of the response, and the relaxation strength. The α relaxation became broader with increasing PCN content, the broadening being attributed to concentration fluctuations. Fragility decreased in the IPNs in comparison with PUR, the kinetic free volume at Tg increased, and the relaxation strength of the α relaxation, normalized to the same PUR content, increased. The results are discussed in terms of the formation of chemical bonds between the components, as confirmed by IR, and the reduced packing density of PUR chains in the IPNs. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3070–3087, 2000  相似文献   

6.
7.
A series of novel polyimides (PIs) ( 3a–d ) were prepared from 3,3′,5,5′‐tetramethyl‐4,4′‐diaminodiphenyl‐4 ″ ‐isopropyltoluene ( 1 ) with four aromatic dianhydrides via a one‐step high temperature polycondensation procedure. The obtained PIs showed excellent solubility, with most of them dissoluble at a concentration of 10 wt % in amide polar solvents and chlorinated solvents. Their films were nearly colorless and exhibited high‐optical transparency, with the UV cutoff wavelength in the range of 328–353 nm and the transparency at 450 nm >80%. They also showed low‐dielectric constant (2.49–2.94 at 1 MHz) and low‐water absorptions (0.44–0.65%). Moreover, these PIs possessed high‐glass transition temperatures (Tg) beyond 327 °C and excellent thermal stability with 10% weight loss temperatures in the range of 530–555 °C in nitrogen atmosphere. In comparison with some fluorinated poly(ether imide)s derived from the trifluoromethyl‐substituted bis(ether amine)s, the resultant PIs 3a–d showed better solubility, lower cutoff wavelength, and higher Tg. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3309–3317, 2009  相似文献   

8.
Radial refractive index profiles within the graded index plastic optical fiber (GI‐POF) is formed by adding a dopant to a polymer. This addition of the dopant significantly decreased the Tg of the polymer due to the plasticization. This disadvantage made the installation of the GI‐POF difficult, especially in vehicle networks in which high thermal stability is required. We have suggested 9‐bromophenanthrene (BPT) as a novel dopant induced less plasticization for poly(methyl methacrylate) (PMMA) than the conventional dopants. However, although the fabricated GI‐POF using BPT had high enough thermal stability for vehicle networks, the attenuation was 800 dB/km and it could not be used. This high attenuation was caused by contaminant in the fabrication process of fibers. In this study, we succeeded to fabricate a GI‐POF with low‐attenuation and high‐thermal stability using highly pure BPT. Its attenuation was improved to 240 dB/km at 650 nm, which was enough transparency for vehicle networks. The Tg of the GIPOF was improved to 107 °C from 90 °C. The thermal stability of the GI‐POF below 85 °C/dry and 75 °C/85%RH was demonstrated to be as high as that of the commercially available step index POF. The bandwidth of the GI‐POF could be estimated over 4.0 GHz for the 50‐m fiber. These results demonstrated that our GI‐POF should qualify to be used in vehicle network. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1464–1469, 2011  相似文献   

9.
Optically transparent and mechanically strong glass fiber (GF)‐reinforced polycarbonate (PC) composites were fabricated via reacting with biorenewable isosorbide (ISB) moiety. While direct copolymerization of ISB and bisphenol A (BPA) by melt transesterification with diphenyl carbonate remained difficult due to the large discrepancy of reactivity and low thermal stability of ISB, we demonstrated in this work that ISB and BPA copolycarbonates with high molecular weight, low discoloration, and excellent optical transparency can be fabricated at 250 °C within 2.5 min by reactive blending of commercially available ISB‐based PC and BPA‐PC. A systematic study of synthesis, thermal degradation, and reactive blending of ISB‐containing PCs was performed to distinguish the reactivity between ISB and BPA, elucidate the effect of catalyst on chain scission, and testify the reaction mechanism of the unexpected asymmetrical inner–inner carbonate exchange. We clarified that the hydroxyl group on BPA exhibited a low reactivity and Lewis acid‐catalytic transesterification played a key role in preventing from the chain scission during the asymmetrical inner–inner exchange. Another unexpected factor that effectively suppressed the further chain scission was the miscibility of the ISB‐based PC with BPA‐PC once each chain on average was carbonate exchanged with its counterpart to form a “biblock” PC. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1670–1681  相似文献   

10.
The molecular relaxation processes and structure of isotactic polystyrene (iPS) films were investigated with real‐time dielectric spectroscopy and simultaneous wide‐ and small‐angle X‐ray scattering. The purpose of this work was to explore the restrictions imposed on molecular mobility in the vicinity of the α relaxation (glass transition) for crystallized iPS. Isothermal cold crystallization at temperatures of Tc = 140 or 170 °C resulted in a sigmoidal increase of crystallinity with crystallization time. The glass‐transition temperature (Tg), determined calorimetrically, exhibited almost no increase during the first stage of crystal growth before impingement of spherulites. After impingement, the calorimetric Tg increased, suggesting that confinement effects occur in the latter stages of crystallization. For well‐crystallized samples, the radius of the cooperativity region decreased substantially as compared with the purely amorphous sample but was always smaller than the layer thickness of the mobile amorphous fraction. Dielectric experiments directly probed changes in the amorphous dipole mobility. The real‐time dielectric data were fitted to a Havriliak–Negami model, and the time dependence of the parameters describing the distribution of relaxation times and dielectric strength was obtained. The central dipolar relaxation time showed little variation before spherulite impingement but increased sharply during the second stage of crystal growth as confinement occurred. Vogel–Fulcher–Tammann analysis demonstrated that the dielectric reference temperature, corresponding to the onset of calorimetric Tg, did not vary for well‐crystallized samples. This observation agreed with a model in which constraints affect primarily the modes having longer relaxation times and thus broaden the glass‐transition relaxation process on the higher temperature side. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 777–789, 2004  相似文献   

11.
The effect of network formation on the secondary (Johari–Goldstein) β‐relaxation was investigated for polyvinylethylene (PVE). Crosslinking affects the segmental (α‐) process in the usual fashion, the networks exhibiting slower and more temperature‐sensitive dynamics. However, the effect on the β‐process is the opposite. The secondary relaxation becomes faster and the activation energy slightly decreases with crosslinking. The strength of the intermolecular cooperativity governing the behavior of the α‐process was assessed using the coupling model, with consistent results obtained from analysis of both the timescale separating the α‐ and β‐relaxations and the activation energy for the latter. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 582–587, 2010  相似文献   

12.
In this work thermal relaxations of chitosan are reported by using a novel methodology that includes subtraction of the dc conductivity contribution, the exclusion of contact and interfacial polarization effects, and obtaining a condition of minimum moisture content. When all these aspects are taken into account, two relaxations are clearly revealed in the low frequency side of the impedance data. We focus on the molecular motions in neutralized and non‐neutralized chitosan analyzed by dielectric spectroscopy in the temperature range from 25 to 250 °C. Low and high frequency relaxations were fitted with the Havriliak and Negami model in the 10?1 to 108 Hz frequency range. For the first time, the low frequency α‐relaxation associated with the glass‐rubber transition has been detected by this technique in both chitosan forms for moisture contents in the range 0.05 to 3 wt % (ca. 18–62 °C). A strong plasticizing effect of water on this primary α‐relaxation is observed by dielectric spectroscopy and is supported by dynamic mechanical analysis measurements. In the absence of water (<0.05 wt %) the α‐relaxation is obscured in the 20–70 °C temperature range by a superposition of two low frequency relaxation processes. The activation energy for the σ‐relaxation is about 80.0–89.0 kJ/mol and for β‐relaxation is about 46.0–48.5 kJ/mol and those values are in agreement with that previously reported by other authors. The non‐neutralized chitosan possess higher ion mobility than the neutralized one as determined by the frequency location of the σ‐relaxation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2259–2271, 2009  相似文献   

13.
A novel benzoxazine monomer containing a benzoxazole group was synthesized using a nonsolvent method and then named DAROH‐a. The structure of DAROH‐a was confirmed by FTIR, 1H NMR, elemental analysis, and mass spectrometry. The curing reaction activation energy was calculated at 140 kJ/mol. Its corresponding crosslinked polybenzoxazines, poly(DAROH‐a), displayed a higher glass transition temperature at 402 °C, a 9% weight loss at the said temperature, and a high char yield of 42 wt % (800 °C, in nitrogen). Moreover, the dielectric constants of poly(DAROH‐a) were low and changed only slightly at different temperatures. Furthermore, the dielectric constants and dielectric loss of poly(DAROH‐a) at the same frequency barely changed from room temperature to 150 °C. The photophysical properties of poly(DAROH‐a) film were also investigated. Poly(DAROH‐a) showed an absorption peak at 280 nm. The photoluminescent emission spectrum of poly(DAROH‐a) film displayed predominant emission peaks at 521 nm. It might have potential application as high‐performance materials because of its excellent dielectric constants stability and thermal stability under high temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A series of new polyimides (PIs) containing di‐tert‐butyl side groups were synthesized via a polycondensation of 1‐(4‐aminophenoxy)‐4‐(4‐amino‐2‐methylphenyl)‐2,6‐di‐tert‐butylbenzene ( 3 ) with various aromatic tetracarboxylic dianhydrides. The novel unsymmetric PIs exhibited a low dielectric constants (2.78–3.02), low moisture absorption (0.53–1.35%), excellent solubility, and high glass transition temperature (308–450 °C). The PI derived from the new diamine and the very rigid naphthalene‐1,4,5,8‐tetracarboxylic dianhydride (NTDA) was soluble in N‐methyl‐2‐pyrrolidone, chloroform, m‐cresol, and cyclohexanone. The unsymmetric di‐tert‐butyl pendent groups significantly enhance the rotational barrier of the polymer chains; thus these PIs had high Tgs. The 1H NMR spectrum of the diamine 3 revealed that the protons of 4‐aminophenoxy moiety are not chemical shift equivalent. This is because the steric hindrance of the bulky di‐tert‐butyl groups prevents the benzene ring of 4‐aminophenoxy moiety from rotating freely. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2443–2452, 2009  相似文献   

15.
Two novel poly(amine‐hydrazide)s were prepared from the polycondensation reactions of the dicarboxylic acid, 9‐[N,N‐di(4‐carboxyphenyl)amino]anthracene ( 1 ), with terephthalic dihydrazide ( TPH ) and isophthalic dihydrazide ( IPH ) via the Yamazaki phosphorylation reaction, respectively. The poly(amine‐hydrazide)s were readily soluble in many common organic solvents and could be solution cast into transparent films. Differential scanning calorimetry (DSC) indicated that these hydrazide polymers had glass‐transition temperatures (Tg) in the range of 182–230 °C and could be thermally cyclodehydrated into the corresponding oxadiazole polymers in the range of 300–400 °C. The resulting poly(amine‐1,3,4‐oxadiazole)s had useful levels of thermal stability associated with high Tg (263–318 °C), 10% weight‐loss temperatures in excess of 500 °C, and char yield at 800 °C in nitrogen higher than 55%. These organo‐soluble anthrylamine‐based poly(amine‐hydrazide)s and poly (amine‐1,3,4‐oxadiazole)s exhibited maximum UV‐vis absorption at 346–349 and 379–388 nm in N‐methyl‐2‐pyrrolidone (NMP) solution, respectively. Their photoluminescence spectra in NMP solution showed maximum bands around 490–497 nm in the green region. The poly(amine‐hydrazide) I ‐ IPH showed a green photoluminescence at 490 nm with PL quantum yield of 29.9% and 17.0% in NMP solution and film state, respectively. The anthrylamine‐based poly(amine‐1,3,4‐oxadiazole)s revealed a electrochromic characteristics with changing color from the pale yellow neutral form to the red reduced form when scanning potentials negatively from 0.00 to ?2.20 V. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1584–1594, 2009  相似文献   

16.
Carbohydrates are the fundamental building blocks of many natural polymers, their wide bioavailability, high chemical functionality, and stereochemical diversity make them attractive starting materials for the development of new synthetic polymers. In this work, one such carbohydrate, d ‐glucopyranoside, was utilized to produce a hydrophobic five‐membered cyclic carbonate monomer to afford sugar‐based amphiphilic copolymers and block copolymers via organocatalyzed ring‐opening polymerizations with 4‐methylbenzyl alcohol and methoxy poly(ethylene glycol) as initiator and macroinitiator, respectively. To modulate the amphiphilicities of these polymers acidic benzylidene cleavage reactions were performed to deprotect the sugar repeat units and present hydrophilic hydroxyl side chain groups. Assembly of the polymers under aqueous conditions revealed interesting morphological differences, based on the polymer molar mass and repeat unit composition. The initial polymers, prior to the removal of the benzylidenes, underwent a morphological change from micelles to vesicles as the sugar block length was increased, causing a decrease in the hydrophilic–hydrophobic ratio. Deprotection of the sugar block increased the hydrophilicity and gave micellar morphologies. This tunable polymeric platform holds promise for the production of advanced materials for implementation in a diverse range of applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 432–440  相似文献   

17.
The melt rheology of blends of a low molar mass liquid crystal (LC) blended with bisphenol A–polycarbonate (PC), and the self‐diffusion of the polycarbonate in the blends are reported. Results of small angle light scattering indicate that the LC is miscible in the mixture for weight fraction of LC less than 6%. The rheological properties of the blended sample within the miscible regime of the blends vary significantly with LC content. Although at low shear rates, the viscosity is similar to that of the pure polycarbonate, at high shear rates the curves show three regions of behavior, as has been described previously for pure LCs. The diffusion coefficient was obtained from interdiffusion studies using nuclear reaction analysis of bilayer films. An addition of only 1 wt % LC to the polycarbonate significantly increased the diffusion coefficient, but at higher concentration the converse was found. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2187–2195, 2007  相似文献   

18.
Common CO2‐based biodegradable polycarbonates like poly(propylene carbonate) or poly(cyclohexene carbonate) are generally hydrophobic, leading to slow biodegradation rate and poor cell adhesion, which limit their applications in the biomedical field. Here hydrophilic polycarbonates were prepared by one‐pot terpolymerization of CO2, propylene oxide (PO), and 2‐((2‐(2‐(2‐methoxyethoxy)ethoxy)ethoxy)methyl)oxirane (ME3MO) using binary Salen Co(III)‐Cl/PPNCl catalyst system. The resultant terpolymers showed one glass transition temperature (Tg), which decreased with the increase of ME3MO units in the terpolymers (FME3MO). Water contact angles of the resultant terpolymers with FME3MO of 4.2?23.6% were 68?25°, while that of poly(propylene carbonate) was 90°, indicating that the terpolymers became hydrophlilic. Furthermore, the terpolymers with FME3MO more than 25.8% exhibited reversible and rapid thermo‐responsive property in water, and the lower critical solution temperature (LCST) was highly sensitive to FME3MO. In particular, aqueous solution of the terpolymer with FME3MO of 72.6% showed a LCST around 35.2 °C, close to body temperature, which was promising for biomedical applications, especially for in vivo applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2834–2840.  相似文献   

19.
An in situ dielectric measurement for atactic poly(methyl methacrylate) (at‐PMMA) was performed under high‐pressure CO2 under various pressures and temperatures. The at‐PMMA has the acetate side group with a large dipole moment. In the glassy state, a local relaxation process (β‐process) can be observed using dielectric measurement. In the rubbery state, the micro‐Brownian motion of main chain (α‐process) occurs, and the β‐process changes into αβ‐process coordinated with the α‐process. The dielectric loss (ε″) spectrum of at‐PMMA in the glassy state is asymmetric because of the density fluctuation for the amorphous structure. The loss peak frequency shifted to higher frequencies, and the relaxation strength increased with increasing CO2 pressure. In the glassy state, the shape of ε″ spectrum became more symmetric with increasing CO2 pressure. These show that the molecular mobility enhanced by the plasticization effect of CO2 allows the dipolar side groups in the high‐density region to contribute to the relaxation process. We also found that the apparent activation energy decreased under high‐pressure CO2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2951–2962, 2005  相似文献   

20.
A novel benzimidazole‐containing phthalonitrile monomer (BIPN) was synthesized. The chemical structure of BIPN was confirmed by various spectroscopic techniques. Differential scanning calorimetry measurement revealed that the self‐promoted polymerization reaction of the BIPN proceeds extremely sluggish and showed low polymerization exothermic effect. Subsequent rheological measurement displayed that the BIPN was able to keep a stable and low melt viscosity for 4 h at 300 °C, 2 h at 310 °C, and 50 min at 330 °C. The derived BIPN polymers showed excellent thermal properties revealed by thermogravimetric analysis, which were better than those of the corresponding polymer derived from phthalonitrile monomer without benzimidazole moiety. IR analysis confirmed the occurrence of the triazine ring within the polymer crosslinking sites. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号