首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Density Functional Theory (DFT) calculations were performed to optimize the Mo active sites in HBeta zeolite catalysts as well as to locate the reaction pathways to form the Mo-methylidene species. Two different Mo active sites, i.e., the oxidized MoVIO2 and its reduced form MoVO(OH), were developed and incorporated into HBeta zeolites by replacing a pair of Brønsted acidic sites. The Mo-methylidene species were found to be produced through two elementary reaction steps, and the Mo-oxametallacyclobutanes were identified as the intermediates. The activation barriers of the decompositions of the oxametallacyclobutane intermediates (Step 2) were estimated to be higher than those of the ethene addition on the Mo active sites (Step 1). The oxidation states of the Mo centers exerted marked influences on the stabilities of the intermediates as well as on the activation barriers and reaction heats of Steps 1 and 2, which were elucidated by the electronic properties of the Ob-ligands directly bonded to the Mo centers. Both free energy barriers and reaction heats have indicated that the whole processes of generating the Mo-methylidene species were preferred over the Mo(VI) rather than Mo(V) active site. Accordingly, the Mo(VI) active site was more efficient in catalyzing the formation of Mo-methylidene species in the heterogeneous Mo/HBeta catalytic systems.  相似文献   

2.
It is one of the critical fields of green chemistry to catalyze the selective conversion of biomass-derived alcohol and ammonia to primary amines with extensive application. Recently, catalytic systems consisting of non-noble metal nickel- and cobalt-based catalysts have been developed for catalytic alcohol amination. This paper reviewed these two types of catalytic systems, which are classified as skeleton Co and Ni catalytic systems, supported and modified Co and Ni catalytic systems, emphasized on catalysts and catalysis, and clearly explained where zero-valent cobalt or nickel is active species for catalytic reaction. In supported catalysts, the catalytic active sites constituted by the catalytic active species and its micro-environment can regulate the efficiency of catalytic the reaction. While in modified catalysts, modifiers such as metal Fe, Re and Bi may modulate the catalytic active sites and change the catalytic selectivity. There are differences in structure and size between catalysts prepared by different methods, resulting in distinct interface and electronic properties for alcohol amination, which determines the structure–activity relationships of the catalytic system.  相似文献   

3.
杨漂萍  李璐璐  赵志坚  巩金龙 《催化学报》2021,42(5):817-823,中插24-中插28
以可再生能源为能量来源,在水溶液中进行的光(电)催化CO2还原生成高附加值化学品和燃料是解决能源危机与环境污染的有效途径之一.CO是一种简单却很重要的CO2还原产物,它可以作为水煤气变换反应与费托合成的重要原料.具有较高CO选择性的贵金属纳米颗粒催化剂(如Au和Pd)一直受到研究者的广泛关注.一般来说,金属颗粒催化剂的...  相似文献   

4.
New information about the active sites for the water gas shift (WGS) reaction over Cu-CeO2 systems was obtained using in-situ, time-resolved X-ray diffraction (TR-XRD), X-ray absorption spectroscopy (TR-XAS, Cu K and Ce L3 edges), and infrared spectroscopy (DRIFTS). Cu-CeO2 nanoparticles prepared by a novel reversed microemulsion method (doped Ce1-xCuxO2 sample) and an impregnation method (impregnated CuOx/CeO2 sample) were studied. The results from all of the samples indicate that both metallic copper and oxygen vacancies in ceria were involved in the generation of active sites for the WGS reaction. Evidence was found for a synergistic Cu-Ovacancy interaction. This interaction enhances the chemical activity of Cu, and the presence of Cu facilitates the formation of O vacancies in ceria under reaction conditions. Water dissociation occurred on the Ovacancy sites or the Cu-Ovacancy interface. No significant amounts of formate were formed on the catalysts during the WGS reaction. The presence of strongly bound carbonates is an important factor for the deactivation of the catalysts at high temperatures. This work identifies for the first time the active sites for the WGS reaction on Cu-CeO2 catalysts and illustrates the importance of in situ structural studies for heterogeneous catalytic reactions.  相似文献   

5.
The use of single-atom metals (SAM) as catalysts of energy conversion reactions is a recent topic, which has gained popularity in the last two decades. Transition metal dichalcogenides emerged as important electrocatalysts since it was discovered that their chalcogenide edge sites are active towards the electrocatalytic hydrogen evolution reaction (HER) and could also serve as supports for other metals within the same applications. Currently, several groups have reported a novel metal?chalcogenide arrangement, with the possibility of isolating metals at specific sites on chalcogenides to enhance their properties resulting in a synergistic effect in which both chalcogenide and single-atom metal features are exploited, either as promoters or active sites. Theoretical studies have been the basis of these reports.  相似文献   

6.
对于O_2和CO表面催化反应,建立了一个新的不可逆Monte Carlo模拟模型。在 二维格子中,引进了表面活性位和非活性位的要领。模型假设,一定浓度的活性位 随机分布在非活性位上,形成了活性位分布的二维格子模型反应器,并在ZGB模型 的基础上,考虑了氧原子和CO分子的表面扩散,特别是引进了吸附粒子的定向表面 扩散。其中,活性位和活性位最近邻是表面吸附物质反应的活性中心,而非活性位 的作用是通过表面扩散传质。当活性位浓度C_a = 1且考虑扩散时,模型还原为增 加了扩散的ZGB模型。当活性位浓度C_a = 1且只考虑氧的扩散时,模拟结果表明, 扩散几率达到某一数值(0.3)时,二级相变点完全消失。当活性位浓度C_a逐渐减 小时,单位活性位产生的CO_2的速率不断增大,这表明活性位的利用率提高了。  相似文献   

7.
W‐Mn/SiO2 catalyst has been developed in our laboratory (LICP), which is active, selective and stable for oxidative coupling of methane (OCM) in fixed bed and fluidized bed reactors. The research results have been reproduced at different reaction conditions by two groups of J. H. Lunsford (JH‐LL) from Texas A & M University and R. M. Lambert (RMLL) from University of Cambridge respectively. The basic research aspects on this catalyst systems, reaction performances, structure characterization and reaction mechanism were reviewed. A model on two active sites related to W6+/5+ and Mn3+/2+ has been suggested for activation of methane and oxygen respectively.  相似文献   

8.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   

9.
Ultrathin (monolayer) films of transition metal oxides grown on metal substrates have recently received considerable attention as promising catalytic materials, in particular for low‐temperature CO oxidation. The reaction rate on such systems often increases when the film only partially covers the support, and the effect is commonly attributed to the formation of active sites at the metal/oxide boundary. By studying the structure and reactivity of FeO(111) films on Pt(111), it is shown that, independent of the film coverage, CO oxidation takes place at the interface between reduced and oxidized phases in the oxide film formed under reaction conditions. The promotional role of a metal support is to ease formation of the reduced phase by reaction between CO adsorbed on metal and oxygen at the oxide island edge.  相似文献   

10.
作为影响光催化反应的关键因素,光催化剂的活性位点数量直接决定了光催化活性.传统石墨相氮化碳(g-C3N4)由于活性位点不足而表现出较弱的光催化活性.为了增加g-C3N4的活性位点数量,研究人员采取了各种策略,包括杂原子掺杂、表面改性和空位工程.其中,表面改性是增加催化剂活性位点的有效策略之一.氰基具有很强的吸电子能力,可在光催化反应中作为活性位点.然而,关于氰基作为CO2光还原活性位点的研究并不多,特别是对于氰基修饰增强g-C3N4活性的机理尚不清楚.构建多孔结构是暴露催化剂活性位点的有效措施之一.多孔结构可以有效改善纳米片的团聚,促进活性位点暴露,增大反应物与活性位点间的接触机会;并且相互连接的多孔网络可形成独特的传输通道,进一步促进载流子迁移.本文通过分子自组装和碱辅助策略合成了氰基改性的多孔g-C3N4纳米片(MCN-0.5).氰基由于具有良好的吸电子特性,促进了局部载流子分离,并充当了光催化反应的活性位点.受益于活性位点的影响,MCN-0.5表现出显著增强的光催化CO2还原活性.在不添加牺牲剂和助催化剂的条件下,MCN-0.5样品上CO和CH4产率达到13.7和0.6μmol·h–1·g–1,分别是传统煅烧法制备的g-C3N4(TCN)产生CO和CH4产率的2.5和2倍.通过盐酸处理MCN-0.5除去氰基,并没有破坏样品的形貌结构,但催化剂的光催化活性显著降低,证实了氰基活性位点的作用.光还原Pt纳米颗粒的实验结果表明,与对照样品相比,氰基修饰的样品上还原的Pt纳米颗粒更多,进一步证实了引入氰基为光还原反应提供了更多活性位点.CO2等温吸附测试结果表明,MCN-0.5对CO2的吸附能力不如对照样品,间接证明氰基能成为活性位点是由于其良好的吸电子能力促进了局部载流子分离.瞬态荧光光谱、光电化学表征结果表明,氰基修饰增强了载流子迁移和分离能力.根据理论计算和原位红外光谱提出了氰基修饰增强g-C3N4光催化还原CO2活性的作用机理.以三聚氰胺为前驱体接枝氰基的g-C3N4也表现出比体相g-C3N4明显增强的光催化还原CO2活性,这证明了氰基改性增强g-C3N4活性策略的通用性.本文通过在光催化剂材料中设计活性位点为太阳能高效转化提供了一个有效途径.  相似文献   

11.
The effect of surface roughness and number of reaction event on the decay type diffusion limited reaction (DLR) over rough surface of random deposition model was studied to examine the surface morphological effect on the surface reaction. Effect of decay profiles on the reaction probability distribution (RPD) of the reaction was then analyzed with multifractal scaling techniques. The dynamics of these autopoisoning reactions is controlled by the two parameters, namely, the initial sticking probability ( P ini) of every site and the decay rate (m). More the rough surface, less are the number of active sites and wider is the distribution of reaction probability. More the number of reaction events, more are the number of active sites and more is the homogeneity in the RPD. The q‐τ(q) multifractal curves are found to be nonlinear for all the cases which give wide range of α values in α‐f(α) multifractal spectrum. Smaller the decay rate, narrower is the range of α values. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 175–182, 2005  相似文献   

12.
A novel route for methane conversion to higher hydrocarbons over Mo/HZSM-5 catalysts without adding O2 is reported The product is mainly benzene and is formed via oligomerization of ethylene. This reaction process probably occurs on two remotely separated active sites. Ethylene is initially formed as the primary product on the externally loaded Mo active sites While aromatic products are termed on the Bronsted acid sites in the channel systems. In order to relate these two processes, an intermediate diffusion process involving ethylene from the external surface into the channel systems is proposed.  相似文献   

13.
CH3OH temperature programmed surface reaction (TPSR) spectroscopy was employed to determine the chemical nature of active surface sites for bulk mixed metal oxide catalysts. The CH3OH-TPSR spectra peak temperature, Tp, for model supported metal oxides and bulk, pure metal oxides was found to be sensitive to the specific surface metal oxide as well as its oxidation state. The catalytic activity of the surface metal oxide sites was found to decrease upon reduction of these sites and the most active surface sites were the fully oxidized surface cations. The surface V5+ sites were found to be more active than the surface Mo6+ sites, which in turn were significantly more active than the surface Nb5+ and Te4+ sites. Furthermore, the reaction products formed also reflected the chemical nature of surface active sites. Surface redox sites are able to liberate oxygen and yield H2CO, while surface acidic sites are not able to liberate oxygen, contain either H+ or oxygen vacancies, and produce CH3OCH3. Surface V5+, Mo6+, and Te4+ sites behave as redox sites, and surface Nb5+ sites are Lewis acid sites. This experimental information was used to determine the chemical nature of the different surface cations in bulk Mo-V-Te-Nb-Ox mixed oxide catalysts (Mo(0.6)V(1.5)Ox, Mo(1.0)V(0.5)Te(0.16)Ox, Mo(1.0)V(0.3)Te(0.16)Nb(0.12)Ox). The bulk Mo(0.6)V(1.5)Ox and Mo(1.0)V(0.5)Te(0.16)Ox mixed oxide catalytic characteristics were dominated by the catalytic properties of the surface V5+ redox sites. The surface enrichment of these bulk mixed oxide by surface V5+ is related to its high mobility, V5+ possesses the lowest Tammann temperature among the different oxide cations, and the lower surface free energy associated with the surface termination of V=O bonds. The quaternary bulk Mo(1.0)V(0.3)Te(0.16)Nb(0.12)Ox mixed oxide possessed both surface redox and acidic sites. The surface redox sites reflect the characteristics of surface V5+ and the surface acidic sites reflect the properties normally associated with supported Mo6+. The major roles of Nb5+ and Te4+ appear to be that of ligand promoters for the more active surface V and Mo sites. These reactivity trends for CH3OH ODH parallel the reactivity trends of propane ODH because of their similar rate-determining step involving cleavage of a C-H bond. This novel CH3OH-TPSR spectroscopic method is a universal method that has also been successfully applied to other bulk mixed metal oxide systems to determine the chemical nature of the active surface sites.  相似文献   

14.
In this work, the microemulsion polymerization modeling problem is addressed with an integrodifferential approach. The procedure was applied to experimental data, previously presented, on the microemulsion polymerization of hexyl methacrylate (C6MA) and styrene (STY). It was found that: (i) the nucleation rate is not linear with time, as assumed before, (ii) a vitreous effect is observed even in reactions where the polymer's glass transition temperature is lower than the reaction temperature, (iii) radical entry to polymer particles and coagulation among particles are negligible, (iv) the rate decrease interval is also caused by a reduction of active sites, (v) a mechanism in which micelles provide monomer to living particles was detected, and (vi) a simple three-parameter mechanistic model was obtained, capable of describing the studied systems.  相似文献   

15.
To improve energy conversion efficiency, the development of active electrocatalysts with similar structural features to photosynthesis II systems (PS‐II), which can efficiently catalyze the oxygen evolution reaction (OER), have received great research interest. Crystalline cobalt phosphate nanosheets are designed as an efficient OER catalyst in neutral media, showing outstanding performance that even outperforms the noble RuO2 benchmark. The correlation of experimental and computational results reveals that the active sites are the edge‐sharing CoO9 structural motif, akin to the molecular geometry of PS‐II. This unique structure can facilitate reaction intermediate adsorption and decrease the reaction energy barrier, thus improving the OER kinetics.  相似文献   

16.
The gas-phase ethylene polymerizations with SiO2-supported Ziegler–Natta (ZN) catalyst at early moments of reaction is modeled. The experimental data used in this work show that at initial stages of the polymerization there is a sharp reduction in the reaction rate and a sharp rise in molecular weight. In the modeling, multi-active sites assumption and diffusion limitations inside the particle are studied. Energy balance to calculate the temperature at early moment is applied. Kinetic model including initiation, propagation, chain transfers and active site deactivation steps are used to predict the reaction rate and molecular weights. Polymeric flow model (PFM) is applied for single particle model (SPM). The results show two distinct regions. First region with sharp gradient for reaction rate and molecular weights and then, shortly there is a smooth region in which the changes in rate and molecular weights are slow. To fit this sharp gradient followed by a nearly steady state behavior two types of active sites are necessary. A group of highly active sites which deactivated soon and the active sites with lower activity and relatively long-lasting.  相似文献   

17.
The concept and the strategy for designing catalytic systems on the basis of electrochemical microcell models have been proposed and demonstrated for Wacker-type oxidation of ethylene, selective hydrogenation of nitric oxide into hydroxylamine and partial oxidation of alkenes and alkanes. For designing active and selective catalysts, at least four fundamental catalytic elements are required. These are (1) the oxidation sites (anode), (2) the reduction sites (cathode), (3) proton conducting medium, and (4) electron conducting medium. The catalytic elements (3) and (4) would electrochemically connect the oxidation (anode reaction) on site (1) and the reduction (cathode reaction) on site (2). A mixture of these four catalytic elements generates an unlimited number of microcells which work as catalysts for desired synthetic reactions.  相似文献   

18.
The ensemble effect due to variation of Pd content in Pd−Au alloys have been widely investigated for several important reactions, including CO2 reduction reaction (CO2RR), however, identifying the stable Pd arrangements on the alloyed surface and picking out the active sites are still challenging. Here we use a density functional theory (DFT) based machine-learning (ML) approach to efficiently find the low-energy configurations of Pd−Au(111) surface alloys and the potentially active sites for CO2RR, fully covering the Pd content from 0 to 100 %. The ML model is actively learning process to improve the predicting accuracy for the configuration formation energy and to find the stable Pd−Au(111) alloyed surfaces, respectively. The local surface properties of adsorption sites are classified into two classes by the K-means clustering approach, which are closely related to the Pd content on Au surface. The classification is reflected in the variation of adsorption energy of CO and H: In the low Pd content range (0–60 %) the adsorption energies over the surface alloys can be tuned significantly, and in the medium Pd content (37-68 %), the catalytic activity of surface alloys for CO2RR can be increased by increase the Pd content and attributed to the meta-stable active site over the surface. Thus, the active site-dependent reaction mechanism is elucidated based on the ensemble effect, which provides new physical insights to understand the surface-related properties of catalysts.  相似文献   

19.
Two types of copolymerizations were found with the catalyst system Cp2ZrCl2/MAO. One was a less exothermic reaction, and another was a more exothermic one. The former provided a polymer with a single composition distribution because of a single cationic active site. The latter provided a polymer with a bimodal composition distribution, indicating the existence of two active sites. The two active sites were investigated through the comparison of MAO systems and alkylaluminium / borate systems. We speculated that the two active sites were the normal cationic site and the active site where the interaction between a cationic metallocene and an aluminium compound was strong.  相似文献   

20.
宋华  代敏  宋华林 《化学进展》2012,(5):757-768
环境法规对硫氧化物脱出的限制日益严格以及原油品质的不断下降,使得有必要研发高效的加氢脱硫催化剂。Ni2P由于具有优异的加氢脱硫活性和稳定性,引起了广泛的关注。本文综述了Ni2P加氢脱硫催化剂的特性、反应活性相、制备方法、改进和加氢脱硫活性等方面的研究进展。在Ni2P中存在两种不同的初始活性位,四面体几何构型的Ni(1)初始活性位在加氢脱硫反应中参与直接脱硫反应,四方锥几何构型的Ni(2)初始活性位则与催化剂的高加氢活性有关。在加氢脱硫反应中,催化剂表面生成的NixSyP相被认为是真正的活性相。制备Ni2P的方法主要是程序升温还原和液相合成。载体、助剂和络合剂对Ni2P活性相的形成和催化剂的活性有重要影响。相比于商用硫化物催化剂,Ni2P催化剂对噻吩、二苯并噻吩和4,6-二甲基二苯并噻吩均表现出更高的加氢脱硫活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号