首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we propose a two‐level finite element method to analyze the approximate solutions of the stationary Navier‐Stokes equations based on a stabilized local projection. The local projection allows to circumvent the Babuska‐Brezzi condition by using equal‐order finite element pairs. The local projection can be used to stabilize high equal‐order finite element pairs. The proposed method combines the local projection stabilization method and the two‐level method under the assumption of the uniqueness condition. The two‐level method consists of solving a nonlinear equation on the coarse mesh and solving a linear equation on fine mesh. The nonlinear equation is solved by the one‐step Newtonian iteration method. In the rest of this article, we show the error analysis of the lowest equal‐order finite element pair and provide convergence rate of approximate solutions. Furthermore, the numerical illustrations coincide with the theoretical analysis expectations. From the view of computational time, the results show that the two‐level method is effective to solve the stationary Navier‐Stokes equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

2.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

3.
Implicit‐explicit multistep finite element methods for nonlinear convection‐diffusion equations are presented and analyzed. In space we discretize by finite element methods. The discretization in time is based on linear multistep schemes. The linear part of the equation is discretized implicitly and the nonlinear part of the equation explicitly. The schemes are stable and very efficient. We derive optimal order error estimates. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17:93–104, 2001  相似文献   

4.
In this article, we propose and analyze a new decoupled characteristic stabilized finite element method for the time‐dependent Navier–Stokes/Darcy model. The key idea lies in combining the characteristic method with the stabilized finite element method to solve the decoupled model by using the lowest‐order conforming finite element space. In this method, the original model is divided into two parts: one is the nonstationary Navier–Stokes equation, and the other one is the Darcy equation. To deal with the difficulty caused by the trilinear term with nonzero boundary condition, we use the characteristic method. Furthermore, as the lowest‐order finite element pair do not satisfy LBB (Ladyzhen‐Skaya‐Brezzi‐Babuska) condition, we adopt the stabilized technique to overcome this flaw. The stability of the numerical method is first proved, and the optimal error estimates are established. Finally, extensive numerical results are provided to justify the theoretical analysis.  相似文献   

5.
This article proposes a class of high‐order energy‐preserving schemes for the improved Boussinesq equation. To derive the energy‐preserving schemes, we first discretize the improved Boussinesq equation by Fourier pseudospectral method, which leads to a finite‐dimensional Hamiltonian system. Then, the obtained semidiscrete system is solved by Hamiltonian boundary value methods, which is a newly developed class of energy‐preserving methods. The proposed schemes can reach spectral precision in space, and in time can reach second‐order, fourth‐order, and sixth‐order accuracy, respectively. Moreover, the proposed schemes can conserve the discrete mass and energy to within machine precision. Furthermore, to show the efficiency and accuracy of the proposed methods, the proposed methods are compared with the finite difference methods and the finite volume element method. The results of several numerical experiments are given for the propagation of the single solitary wave, the interaction of two solitary waves and the wave break‐up.  相似文献   

6.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

7.
In this article, we give some numerical techniques and error estimates using web‐spline based mesh‐free finite element method for the heat equation and the time‐dependent Navier–Stokes equations on bounded domains. The web‐spline method uses weighted extended B‐splines on a regular grid as basis functions and does not require any grid generation. We demonstrate the method by providing numerical results for the Poisson's and stationary Stokes equation. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

8.
In this note, a non‐standard finite difference (NSFD) scheme is proposed for an advection‐diffusion‐reaction equation with nonlinear reaction term. We first study the diffusion‐free case of this equation, that is, an advection‐reaction equation. Two exact finite difference schemes are constructed for the advection‐reaction equation by the method of characteristics. As these exact schemes are complicated and are not convenient to use, an NSFD scheme is derived from the exact scheme. Then, the NSFD scheme for the advection‐reaction equation is combined with a finite difference space‐approximation of the diffusion term to provide a NSFD scheme for the advection‐diffusion‐reaction equation. This new scheme could preserve the fixed points, the positivity, and the boundedness of the solution of the original equation. Numerical experiments verify the validity of our analytical results. Copyright © 2014 JohnWiley & Sons, Ltd.  相似文献   

9.
N. Fraubse  S.A. Sauter 《PAMM》2003,2(1):509-510
A multi‐grid method for solving linear equation systems as they arise from finite element discretisations of elliptic boundary value problems on complicated domains will be presented and analysed. The emphasis is on the robustness of this algorithm with respect to the geometric details in the domain. Robust multi‐grid convergence can be proved for a two‐dimensional model problem.  相似文献   

10.
Hybrid finite volume/element methods are investigated within the context of transient viscoelastic flows. A finite volume algorithm is proposed for the hyperbolic constitutive equation, of Oldroyd‐form, whereas the continuity/momentum balance is accommodated through a Taylor‐Galerkin finite element method. Various finite volume combinations are considered to derive accurate and stable implementations. Consistency of formulation is key, embracing fluctuation distribution and median‐dual‐cell constructs, within a cell‐vertex discretisation on triangles. In addition, we investigate the effect of treating the time‐term in a finite element fashion, using mass‐matrix iteration instead of the standard finite volume mass‐lumping approach. We devise an accurate transient scheme that captures the analytical solution at short and long time, both in core flow and near shear boundaries. In this respect, some difficulties are highlighted. A new method emerges, with the Low Diffusion B (LDB, with or without mass‐matrix iteration) as the optimal choice. We progress to a complex flow application and demonstrate some provocative features due to the influence of true transient boundary conditions on evolutionary flow‐structure in a 4:1 start‐up rounded‐corner contraction problem. © 2004 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

11.
Mathematical models used to describe porous medium flow lead to coupled systems of time‐dependent partial differential equations. Standard methods tend to generate numerical solutions with nonphysical oscillations or numerical dispersion along with spurious grid‐orientation effect. The MMOC‐MFEM time‐stepping procedure, in which the modified method of characteristics (MMOC) is used to solve the transport equation and a mixed finite element method (MFEM) is used for the pressure equation, simulates porous medium flow accurately even if large spatial grids and time steps are used. In this article we prove an optimal‐order error estimate for a family of MMOC‐MFEM approximations. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

12.
A space‐time finite element method is introduced to solve the linear damped wave equation. The scheme is constructed in the framework of the mixed‐hybrid finite element methods, and where an original conforming approximation of H(div;Ω) is used, the latter permits us to obtain an upwind scheme in time. We establish the link between the nonstandard finite difference scheme recently introduced by Mickens and Jordan and the scheme proposed. In this regard, two approaches are considered and in particular we employ a formulation allowing the solution to be marched in time, i.e., one only needs to consider one time increment at a time. Numerical results are presented and compared with the analytical solution illustrating good performance of the present method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

13.
We study a generalized time‐harmonic transport equation, which appears in the Goldstein equations and allows us to model the acoustic radiation in a flow. We investigate the well‐posedness of this transport problem. The result will be established under the assumption of a Ω‐filling flow, which, in 2D, is simply equivalent to a flow that does not vanish. The approach relies on the method of characteristics, which leads to the resolution of the transport equation along the streamlines, and on general results of functional analysis. The theoretical results are illustrated with numerical results obtained with a Streamline Upwind Petrov‐Galerkin finite element scheme.  相似文献   

14.
L‐error estimates for finite element for Galerkin solutions for the Benjamin‐Bona‐Mahony‐Burgers (BBMB) equation are considered. A priori bound and the semidiscrete Galerkin scheme are studied using appropriate projections. For fully discrete Galerkin schemes, we consider the backward Euler method and analyze the corresponding error estimates. For a second order accuracy in time, we propose a three‐level backward method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

15.
A transmission (bidomain) problem for the one‐dimensional Klein–Gordon equation on an unbounded interval is numerically solved by a boundary element method‐finite element method (BEM‐FEM) coupling procedure. We prove stability and convergence of the proposed method by means of energy arguments. Several numerical results are presented, confirming theoretical results. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 2042–2082, 2014  相似文献   

16.
We present an H1‐Galerkin mixed finite element method for a nonlinear parabolic equation, which models a compressible fluid flow process in subsurface porous media. The method possesses the advantages of mixed finite element methods while avoiding directly inverting the permeability tensor, which is important especially in a low permeability zone. We conducted theoretical analysis to study the existence and uniqueness of the numerical solutions of the scheme and prove an optimal‐order error estimate for the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

17.
In this article, we analyze the stability and error estimate of a decoupled algorithm for a magneto‐convection problem. Magneto‐convection is assumed to be modeled by a coupled system of reduced magneto‐hydrodynamic (RMHD) equations and convection‐diffusion equation. The proposed algorithm applies the second‐order backward difference formula in time and finite element in space. To obtain a noniterative decouple algorithm from the fully discrete nonlinear system, we use a second‐order extrapolation in time to the nonlinear terms such that their skew symmetry properties are preserved. We prove the stability of the algorithm and derive error estimates without assuming any stability conditions. The algorithm is unconditionally stable and requires the solution of one RMHD problem and one convection‐diffusion equation per time step. Numerical test is presented that illustrates the accuracy and efficiency of the algorithm.  相似文献   

18.
Finite difference scheme to the generalized one‐dimensional sine‐Gordon equation is considered in this paper. After approximating the second order derivative in the space variable by the compact finite difference, we transform the sine‐Gordon equation into an initial‐value problem of a second‐order ordinary differential equation. Then Padé approximant is used to approximate the time derivatives. The resulting fully discrete nonlinear finite‐difference equation is solved by a predictor‐corrector scheme. Both Dirichlet and Neumann boundary conditions are considered in our proposed algorithm. Stability analysis and error estimate are given for homogeneous Dirichlet boundary value problems using energy method. Numerical results are given to verify the condition for stability and convergence and to examine the accuracy and efficiency of the proposed algorithm. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

19.
We apply the least‐squares finite element method with adaptive grid to nonlinear time‐dependent PDEs with shocks. The least‐squares finite element method is also used in applying the deformation method to generate the adaptive moving grids. The effectiveness of this method is demonstrated by solving a Burgers' equation with shocks. Computational results on uniform grids and adaptive grids are compared for the purpose of evaluation. The results show that the adaptive grids can capture the shock more sharply with significantly less computational time. For moving shock, the adaptive grid moves correctly with the shock. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

20.
We develop 2‐grid schemes for solving nonlinear reaction‐diffusion systems: where p = (p, q) is an unknown vector‐valued function. The schemes use discretizations based on a mixed finite‐element method. The 2‐grid approach yields iterative procedures for solving the nonlinear discrete equations. The idea is to relegate all the Newton‐like iterations to grids much coarser than the final one, with no loss in order of accuracy. The iterative algorithms examined here extend a method developed earlier for single reaction‐diffusion equations. An application to prepattern formation in mathematical biology illustrates the method's effectiveness. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 589–604, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号