首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A refinable linear functional is one that can be expressed as a convex combination and defined by a finite number of mask coefficients of certain stretched and shifted replicas of itself. The notion generalizes an integral weighted by a refinable function. The key to calculating a Gaussian quadrature formula for such a functional is to find the three-term recursion coefficients for the polynomials orthogonal with respect to that functional. We show how to obtain the recursion coefficients by using only the mask coefficients, and without the aid of modified moments. Our result implies the existence of the corresponding refinable functional whenever the mask coefficients are nonnegative, even when the same mask does not define a refinable function. The algorithm requires rational operations and, thus, can in principle deliver exact results. Numerical evidence suggests that it is also effective in floating-point arithmetic.

  相似文献   


3.
In this paper we analyze a perturbation of a nontrivial positive measure supported on the unit circle. This perturbation is the inverse of the Christoffel transformation and is called the Geronimus transformation. We study the corresponding sequences of monic orthogonal polynomials as well as the connection between the associated Hessenberg matrices. Finally, we show an example of this kind of transformation.  相似文献   

4.
A hierarchy of matrix-valued polynomials which generalize the Jacobi polynomials is found. Defined by a Rodrigues formula, they are also products of a sequence of differential operators. Each class of polynomials is complete, satisfies a three term recurrence relation, integral inter-relations, and weak orthogonality relations.  相似文献   

5.
The probability generating function (pgf) of an n-variate negative binomial distribution is defined to be [β(s1,…,sn)]?k where β is a polynomial of degree n being linear in each si and k > 0. This definition gives rise to two characterizations of negative binomial distributions. An n-variate linear exponential distribution with the probability function h(x1,…,xn)exp(Σi=1n θixi)f(θ1,…,θn) is negative binomial if and only if its univariate marginals are negative binomial. Let St, t = 1,…, m, be subsets of {s1,…, sn} with empty ∩t=1mSt. Then an n-variate pgf is of a negative binomial if and only if for all s in St being fixed the function is of the form of the pgf of a negative binomial in other s's and this is true for all t.  相似文献   

6.
New special functions called -functions are introduced. Connections of -functions with the known Legendre, Chebyshev and Gegenbauer polynomials are given. For -functions the Rodrigues formula is obtained.  相似文献   

7.
《Mathematische Nachrichten》2017,290(11-12):1716-1731
Exceptional orthogonal Laguerre polynomials can be viewed as an extension of the classical Laguerre polynomials per excluding polynomials of certain order(s) from being eigenfunctions for the corresponding exceptional differential operator. We are interested in the (so‐called) Type I X1‐Laguerre polynomial sequence , and , where the constant polynomial is omitted. We derive two representations for the polynomials in terms of moments by using determinants. The first representation in terms of the canonical moments is rather cumbersome. We introduce adjusted moments and find a second, more elegant formula. We deduce a recursion formula for the moments and the adjusted ones. The adjusted moments are also expressed via a generating function. We observe a certain detachedness of the first two moments from the others.  相似文献   

8.
Orthogonal polynomials for exponential weights on   总被引:4,自引:4,他引:0  
Let I=[0,d), where d is finite or infinite. Let , where and Q is continuous and increasing on I, with limit ∞ at d. We study the orthonormal polynomials associated with the weight , obtaining bounds on the orthonormal polynomials, zeros, and Christoffel functions. In addition, we obtain restricted range inequalities.  相似文献   

9.
10.
11.
Given an orthogonal polynomial system {Q n (x)} n=0 , define another polynomial system by where α n are complex numbers and t is a positive integer. We find conditions for {P n (x)} n=0 to be an orthogonal polynomial system. When t=1 and α1≠0, it turns out that {Q n (x)} n=0 must be kernel polynomials for {P n (x)} n=0 for which we study, in detail, the location of zeros and semi-classical character. Received: November 25, 1999; in final form: April 6, 2000?Published online: June 22, 2001  相似文献   

12.
The orthogonal polynomials on the unit circle are defined by the recurrence relation
where for any k0. If we consider n complex numbers and , we can use the previous recurrence relation to define the monic polynomials Φ01,…,Φn. The polynomial Φn(z)=Φn(z;α0,…,αn-2,αn-1) obtained in this way is called the paraorthogonal polynomial associated to the coefficients α0,α1,…,αn-1.We take α0,α1,…,αn-2 i.i.d. random variables distributed uniformly in a disk of radius r<1 and αn-1 another random variable independent of the previous ones and distributed uniformly on the unit circle. For any n we will consider the random paraorthogonal polynomial Φn(z)=Φn(z;α0,…,αn-2,αn-1). The zeros of Φn are n random points on the unit circle.We prove that for any the distribution of the zeros of Φn in intervals of size near eiθ is the same as the distribution of n independent random points uniformly distributed on the unit circle (i.e., Poisson). This means that, for large n, there is no local correlation between the zeros of the considered random paraorthogonal polynomials.  相似文献   

13.
Para‐orthogonal polynomials derived from orthogonal polynomials on the unit circle are known to have all their zeros on the unit circle. In this note we study the zeros of a family of hypergeometric para‐orthogonal polynomials. As tools to study these polynomials, we obtain new results which can be considered as extensions of certain classical results associated with three term recurrence relations and differential equations satisfied by orthogonal polynomials on the real line. One of these results which might be considered as an extension of the classical Sturm comparison theorem, enables us to obtain monotonicity with respect to the parameters for the zeros of these para‐orthogonal polynomials. Finally, a monotonicity of the zeros of Meixner‐Pollaczek polynomials is proved.  相似文献   

14.
A linear model is defined for logarithmic and linear functions of negative multinomial frequency counts. A closed-form estimator of the model parameters, estimator covariance matrix, and general Wald test are derived under the assumption of negative multinomial sampling.  相似文献   

15.
We consider the space Pn of orthogonal polynomials of degree n on the unit disc for a general radially symmetric weight function. We show that there exists a single orthogonal polynomial whose rotations through the angles , j=0,1,…,n forms an orthonormal basis for Pn, and compute all such polynomials explicitly. This generalises the orthonormal basis of Logan and Shepp for the Legendre polynomials on the disc.Furthermore, such a polynomial reflects the rotational symmetry of the weight in a deeper way: its rotations under other subgroups of the group of rotations forms a tight frame for Pn, with a continuous version also holding. Along the way, we show that other frame decompositions with natural symmetries exist, and consider a number of structural properties of Pn including the form of the monomial orthogonal polynomials, and whether or not Pn contains ridge functions.  相似文献   

16.
In this paper, we consider bivariate orthogonal polynomials associated with a quasi-definite moment functional which satisfies a Pearson-type partial differential equation. For these polynomials differential properties are obtained. In particular, we deduce some structure and orthogonality relations for the successive partial derivatives of the polynomials.   相似文献   

17.
In this article, we establish the Bessel polynomials with varying large negative parameters and discuss their orthogonality based on the generalized Bessel polynomials. By using the Riemann-Hilbert boundary value problem on the positive real axis, we get the Riemann-Hilbert characterization of the main Bessel polynomials with varying large negative parameters.  相似文献   

18.
Classical orthogonal polynomials in two variables are defined as the orthogonal polynomials associated to a two-variable moment functional satisfying a matrix analogue of the Pearson differential equation. Furthermore, we characterize classical orthogonal polynomials in two variables as the polynomial solutions of a matrix second order partial differential equation. AMS subject classification 42C05, 33C50Partially supported by Ministerio de Ciencia y Tecnología (MCYT) of Spain and by the European Regional Development Fund (ERDF) through the grant BFM2001-3878-C02-02, Junta de Andalucía, G.I. FQM 0229 and INTAS Project 2000-272.  相似文献   

19.
20.
We exploit difference equations to establish sharp inequalities on the extreme zeros of the classical discrete orthogonal polynomials, Charlier, Krawtchouk, Meixner and Hahn. We also provide lower bounds on the minimal distance between their consecutive zeros.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号