首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to establish the mechanism and to determine the parameters of lithium transport in electrodes based on lithium-vanadium phosphate (Li3V2(PO4)3), the kinetic model was designed and experimentally tested for joint analysis of electrochemical impedance (EIS), cyclic voltammetry (CV), pulse chronoamperometry (PITT), and chronopotentiometry (GITT) data. It comprises the stages of sequential lithium-ion transfer in the surface layer and the bulk of electrode material’s particles, including accumulation of lithium in the bulk. Transfer processes at both sites are of diffusion nature and differ significantly, both by temporal (characteristic time, τ) and kinetic (diffusion coefficient, D) constants. PITT data analysis provided the following D values for the predominantly lithiated and delithiated forms of the intercalation material: 10?9 and 3 × 10?10 cm2 s?1, respectively, for transfer in the bulk and 10?12 cm2 s?1 for transfer in the thin surface layer of material’s particles. D values extracted from GITT data are in consistency with those obtained from PITT: 3.5–5.8 × 10?10 and 0.9–5 × 10?10 cm2 s?1 (for the current and currentless mode, respectively). The D values obtained from EIS data were 5.5 × 10?10 cm2 s?1 for lithiated (at a potential of 3.5 V) and 2.3 × 10?9 cm2 s?1 for delithiated (at a potential 4.1 V) forms. CV evaluation gave close results: 3 × 10?11 cm2 s?1 for anodic and 3.4 × 10?11 cm2 s?1 for cathodic processes, respectively. The use of complex experimental measurement procedure for combined application of the EIS, PITT, and GITT methods allowed to obtain thermodynamic E,c dependence of Li3V2(PO4)3 electrode, which is not affected by polarization and heterogeneity of lithium concentration in the intercalate.  相似文献   

2.
To further study the lithium ion transportation behavior of cathode material FeF3?·?0.33H2O/C synthesized by a simple one-step chemico-mechanical method, the Electrochemical impedance spectrum (EIS) measured at series of open-circuit voltages were investigated in detail. The results showed that the EIS profiles of FeF3?·?0.33H2O/C materials were strongly potential dependent. The equivalent circuit parameters obtained by fitting the experimental data as a function of open-circuit voltage (OCV) level were depicted. The ohmic resistance R0, solid electrolyte inter-phase resistance R SEI, electronic conduction resistance R E, charge transfer resistance R R, and Q parameter of CPE circuit characteristic of Li+ diffusion Q diff all showed a sudden change at the OCV level 2.5 V. Ohmic resistance R0 had a relatively lower resistance of ca. 10 Ω above OCV level 2.5 V and a higher resistance of about 40 Ω below 2.5 V. Similar situation was also observed for R SEI, which was around 20 Ω above 2.5 V and soared up quickly when the equilibrium potential fell below 2.5 V. Similar variations were also observed for R E and R R. A high resistance of ca. 410 and 520 Ω was obtained at OCV level 2.05 V, respectively. Q diff showed a convex profile, which matched the variation of Li+ diffusion coefficient well.  相似文献   

3.
The silicon/graphite/carbon (SGC) composite was successfully prepared by ball-milling combined with pyrolysis technology using nanosilicon, graphite, and phenolic resin as raw materials. The structure and morphology of the as-prepared materials are characterized by X–ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscope (TEM). Meanwhile, the electrochemical performance is tested by constant current charge–discharge technique, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) measurements. The electrodes exhibit not only high initial specific capacity at a current density of 100 mA g?1, but also good capacity retention in the following 50 cycles. The EIS results indicate that the electrodes show low charge transfer impedance Rsf?+?Rct. The results promote the as-prepared SGC material as a promising anode for commercial use.  相似文献   

4.
Dextran-chitosan blend added with ammonium thiocyanate (NH4SCN)-based solid polymer electrolytes are prepared by solution cast method. The interaction between the components of the electrolyte is verified by Fourier transform infrared (FTIR) analysis. The blend of 40 wt% dextran-60 wt% chitosan is found to be the most amorphous ratio. The room temperature conductivity of undoped 40 wt% dextran-60 wt% chitosan blend film is identified to be (3.84?±?0.97)?×?10?10 S cm?1. The inclusion of 40 wt.% NH4SCN to the polymer blend has optimized the room temperature conductivity up (1.28?±?0.43)?×?10?4 S cm?1. Result from X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis shows that the electrolyte with the highest conductivity value has the lowest degree of crystallinity (χ c) and the glass transition temperature (T g), respectively. Temperature-dependence of conductivity follows Arrhenius theory. From transport analysis, the conductivity is noticed to be influenced by the mobility (μ) and number density (n) of ions. Conductivity trend is further verified by field emission scanning electron microscopy (FESEM) and dielectric results.  相似文献   

5.
Electronic and optical properties of co-doped zinc oxide ZnO with silicon (Si) and aluminum (Al), in Zn1?2x Si x Al x O (0 ≤ x ≤ 0.0625) original structure forms, are investigated by the first-principles calculations based on the density functional theory (DFT). The optical constants and dielectric functions are investigated with the full-potential linearized augmented plane wave (FP-LAPW) method and the generalized gradient approximation (GGA) by WIEN2k package. The complex dielectric functions, refractive index and band gap of the pure as well as doped and co-doped ZnO were investigated, which are in good agreement with the available experimental results for the undoped ZnO. Thus, the maximum optical transmittance of the co-doped ZnO of about 95 % was achieved; it is higher than that of pure ZnO. Thus, we showed for the Si–Al co-doped ZnO with x = 0.0315 that the optical transmittance can cover a larger range in the visible light region. In addition, an occurrence of important energy levels around Fermi levels was showed, which is mainly due to doping atoms that lead to an overlap between valence and conduction bands, and consequently to the significant conductor behavior of the Si–Al co-doped ZnO. The original Zn1?2x Si x Al x O structure reveals promising optical and electronic properties, and it can be investigated as good candidates for practical uses as transparent and conducting electrodes in solar cell devices.  相似文献   

6.
Photoelectrodes of dye-sensitized solar cells (DSSCs) have been prepared using nanosized titanium dioxide that have soaked in a solution of different saffron (Crocus sativus L.) spice content in ethanol. The optimized polyacrylonitrile (PAN)-based gel polymer electrolyte with 40.93 wt.% ethylene carbonate, 37.97 wt.% propylene carbonate, 4.37 wt.% tetrapropylammonium iodide, 9.86 wt.% PAN, 1.24 wt.% 1-butyl-3-methylimidazolium iodide, 4.35 wt.% lithium iodide and 1.28 wt.% iodine has been used as the electrolyte for DSSC. The electrolyte has conductivity of 2.91 mS cm?1 at room temperature (298 K). DSSCs were also sensitized with saffron solution that has been added with 30 wt.% chenodeoxycholic acid (CDCA) co-adsorbent and designated as DSSC P4. The solar cell converts light-to-electricity at an efficiency of 0.31%. This is 29% enhancement in efficiency for the DSSC without addition of CDCA in the saffron-ethanol solution. The DSSC exhibits current density at short-circuit (J sc ) of 1.26 mA cm?2, voltage at open circuit (V oc ) of 0.48 V and 51% fill factor. DSSC P4 also exhibits the highest incident photon-to-current density of more than 40% at 340 nm wavelength.  相似文献   

7.
The sample of Mg0. 5+y (Zr1-y Fey) 2 (PO4) 3 (0.0 ≤y ≤0.5) was synthesized using the sol-gel method. The structures of the samples were investigated using X-ray diffraction and Fourier transform infrared spectroscopy measurement. XRD studies showed that samples had a monoclinic structure which was iso-structured with the parent compound, Mg0.5Zr (PO4) 3. The complex impedance spectroscopy was carried out in the frequency range 1–6 MHz and temperature range 303 to 773 K to study the electrical properties of the electrolytes. The substitutions of Fe3+ with Zr4+ in the Mg0.5Zr (PO4) 3 structure was introduced as an extrainterstitial Mg2+ ion in the modified structured. The compound of Mg0.5+y (Zr1-y Fey)2(PO4)3 with y?=?0.4 gives a maximum conductivity value of 1.25?×?10?5 S cm?1 at room temperature and 7.18?×?10?5 S cm?1 at 773 K. Charge carrier concentration, mobile ion concentration, and ion hopping rate are calculated by fitting the conductance spectra to power law variation, σ ac (ω)?=?σ o ? +?Aω α . The charge carrier concentration and mobile ion concentration increases with increase of Fe3+ inclusion. This implies the increase in conductivity of the compounds was due to extra interstitial Mg2+ ions.  相似文献   

8.
Gel polymer electrolytes (GPE) based on electrospun polymer membranes, poly(vinylidene fluoride-co-hexafluoropropylene), grafted poly(poly(ethylene glycol) methyl ether methacrylate) (PVDF-HFP-g-PPEGMA), and poly(vinylidene difluoride-co-hexafluoropropylene) (PVDF-HFP) are prepared for lithium ion batteries by incorporating with 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (BMITFSI). The uniform porosity and the compatibility of blend electrospun membranes avoiding the pore blocking are beneficial to enhance the electrolyte uptakes. The GPE based on the fibrous PVDF-HFP-g-PPEGMA/PVDF-HFP activated with 1 M LiTFSI (BMITFSI) show a maximum ionic conductivity of 2.3 × 10?3 S cm?1 at room temperature and electrochemical stability of up to 5.2 V. The Li/GPE/LiFePO4 cells with GPE based on PVDF-HFP-g-PPEGMA/PVDF-HFP blend electrospun membrane deliver specific capacities of 163, 141, and 125 mAh g?1 at 0.1, 0.5, and 1C rates, respectively, and remains well after 50 cycles for each rate. Therefore, the novel GPE have been demonstrated to be suitable for lithium-ion battery applications.  相似文献   

9.
Al-doped ZnO (AZO) was sputtered on the surface of LiNi1/3Co1/3Mn1/3O2 (NCM) thin film electrode via radio frequency magnetron sputtering, which was demonstrated to be a useful approach to enhance electrochemical performance of thin film electrode. The structure and morphology of the prepared electrodes were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy techniques. The results clearly demonstrated that NCM thin film showed a strong (104) preferred orientation and AZO was uniformly covered on the surface of NCM electrode. After 200 cycles at 50 μA μm?1 cm?2, the NCM/AZO-60s electrode delivered highest discharge capacity (78.1 μAh μm?1 cm?2) compared with that of the NCM/AZO-120s electrode (62.4 μAh μm?1 cm?2) and the bare NCM electrode (22.3 μAh μm?1 cm?2). In addition, the rate capability of the NCM/AZO-60s electrode was superior to the NCM/AZO-120s and bare NCM electrodes. The improved electrochemical performance can be ascribed to the appropriate thickness of the AZO coating layer, which not only acted as HF scavenger to keep a stable electrode/electrolyte interface but also reduced the charge transfer resistance during cycling.  相似文献   

10.
Single phase polycrystalline BaZr0.3Ce0.5Y0.1Yb0.1O3 - δ electrolyte material was prepared by solid state reaction route. Rietveld analysis of the XRD data confirms the tetragonal symmetry in the I4/mcm space group with unit cell parameters of a = b = 6.0567(3) Å and c = 8.5831(5) Å. The addition of ZnO as a sintering additive was found to reduce the sintering temperature and enhance both overall sinterability and grain growth. Sintering temperature was reduced by 200–300 °C, and a very high relative density of about 98% was achieved at 1400 °C. Impedance spectroscopy in humidified 5% H2/Ar atmosphere shows that the protonic conductivity at 600 °C was 8.60 × 10?3 S cm?1. Thermal analysis performed in pure CO2 atmosphere shows very good chemical stability up to 1200 °C. Good biaxial flexure strength of 100–200 MPa was reported which makes this material a promising electrolyte material for intermediate temperature solid oxide fuel cells (IT-SOFCs).  相似文献   

11.
The high-voltage spinel-type LiNi0.5Mn1.5O4 (LNMO) is a promising cathode material for next-generation lithium ion batteries. In this study, hollow LNMO microspheres have been synthesized via co-precipitation method accompanied with high-temperature calcinations. The physical and electrochemical properties of the materials are characterized by x-ray diffraction (XRD), TGA, RAMAN, CV, scanning electron microscope (SEM), transmission electon microscopy (TEM), electrochemical impendence spectroscopy (EIS), and charge-discharge tests. The results prove that the microspheres combine hollow structures inward and own a cubic spinel structure with space group of Fd-3m, high crystallinity, and excellent electrochemical performances. With the short Li+ diffusion length and hollow structure, the hierarchical LNMO microspheres exhibit 138.2 and 108.5 mAh g?1 at 0.5 and 10 C, respectively. Excellent cycle stability is also demonstrated with more than 98.8 and 88.2 % capacity retention after 100 cycles at 1 and 10 C, respectively.  相似文献   

12.
Nanocrystalline Li2TiO3 was successfully synthesized using solid-state reaction method. The microstructural and electrochemical properties of the prepared material are systematically characterized. The X-ray diffraction pattern of the prepared material exhibits predominant (002) orientation related to the monoclinic structure with C2/c space group. HRTEM images and SAED analysis reveal the well-developed nanostructured particles with average size of ~40 nm. The electrochemical properties of the prepared sample are carried out using cyclic voltammetry (CV) and chronopotentiometry (CP) using Pt//Li2TiO3 cell in 1 mol L?1 Li2SO4 aqueous electrolyte. The Li2TiO3 electrode exhibits a specific discharge capacity of 122 mAh g?1; it can be used as anode in Li battery within the potential window 0.0–1.0 V, while investigated as a supercapacitor electrode, it delivers a specific capacitance of 317 F g?1 at a current density of 1 mA g?1 within the potential range ?0.4 to +0.4 V. The demonstration of both anodic and supercapacitor behavior concludes that the nanocrystalline Li2TiO3 is a suitable electrode material for supercapattery application.  相似文献   

13.
Hexanoyl chitosan soluble in THF is prepared by acyl modification of chitosan. Epoxidation natural rubber (ENR25) (25 mol%) is chosen to blend with hexanoyl chitosan. Films of hexanoyl chitosan/ENR25 blends containing lithium bis(trifluoromethanesulfonyl)imide (LiN(CF3SO2)2) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMImTFSI) are prepared by solution casting technique. FTIR results suggested that LiN(CF3SO2)2 salt interacted with hexanoyl chitosan, ENR25, and EMImTFSI. EMImTFSI interacted with hexanoyl chitosan and ENR25 to form EMIm+-hexanoyl chitosan and EMIm+-ENR25 complexes, respectively. The effect of EMImTFSI on the morphology and thermal properties of the blends is investigated by polarized optical microscopy (POM) and differential scanning calorimetry (DSC), respectively. The ionic conductivity of the electrolytes is measured by electrochemical impedance spectroscopy (EIS). Upon addition of 12 wt% EMImTFSI, a maximum conductivity of 1.3 × 10?6 S cm?1 is achieved. Methods based on impedance spectroscopy and FTIR are employed to study the transport properties of the prepared polymer electrolytes. The ac conductivity was found to obey universal law, σ(ω)?=?σ dc ?+? S . The temperature dependence of exponent s is interpreted by the small polaron hopping (SPH) model.  相似文献   

14.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

15.
Advanced Li-air battery architecture demands a high Li+ conductive solid electrolyte membrane that is electrochemically stable against metallic lithium and aqueous electrolyte. In this work, an investigation has been carried out on the microstructure, Li+ conduction behaviour and structural stability of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) prepared by conventional solid-state reaction technique. The phase analysis of Li7La3-x Y x Zr2O12 (x = 0.125, 0.25 and 0.50) sintered at 1200 °C by powder X-ray diffraction (PXRD) and Raman confirms the formation of high Li+ conductive cubic phase (\( Ia\overline{3}d \)) lithium garnets. Among the investigated lithium garnets, Li7La2.75Y0.25Zr2O12 sintered at 1200 °C exhibits a maximized room temperature total (bulk + grain boundary) Li+ conductivity of 3.21 × 10?4 S cm?1 along with improved relative density of 96 %. The preliminary investigation on the structural stability of Li7La2.75Y0.25Zr2O12 in the solutions of 1 M LiCl, dist. H2O and 1 M LiOH at 30 °C/50 °C indicates that the Li7La2.75Y0.25Zr2O12 is relatively stable against 1 M LiCl and dist. H2O. Further electrochemical investigation is essential for practical application of Li7La2.75Y0.25Zr2O12 as protective solid electrolyte membrane in aqueous Li-air battery.  相似文献   

16.
S. Z. Yusof  H. J. Woo  A. K. Arof 《Ionics》2016,22(11):2113-2121
A polymer electrolyte system comprising methylcellulose (MC) as the host polymer and lithium bis(oxalato) borate (LiBOB) as the lithium ion source has been prepared via the solution cast technique. The electrolyte with the highest conductivity of 2.79 μS cm?1 has a composition of 75 wt% MC–25 wt% LiBOB. The mobile ion concentration (n) in this sample was estimated to be 5.70?×?1020 cm?3. A good correlation between ionic conductivity, dielectric constant, and free ion concentration has been observed. The ratio of mobile ion number density (n) at a particular temperature to the concentration n 0 of free ions at T?=?∞ (n/n 0) and the power law exponents (s) exhibit opposite trends when varied with salt concentration.  相似文献   

17.
This paper presents a sensitive electrochemical method for the determination of cysteamine (CA) using promazine hydrochloride-modified multi-wall carbon nanotubes carbon paste electrode (PrH/MWCNTs CPE). Because of the good electrochemical activity of MWCNTs and the acceptable performance of promazine hydrochloride (PrH) as an electrocatalytic mediator, the modified electrode significantly enhanced the sensitivity for the detection of CA in comparison to the bare carbon paste electrode (CPE). All chemical parameters such as pH of solution, concentration of PrH and kinetic parameters of the system were investigated. Linear sweep voltammetric (LSV) method was used to follow the electrocatalytic effect of CA on the current–potential response of PrH. Under optimum conditions, the obtained net peak current ?I p(I sample???I blank) was linear with CA concentrations in two dynamic ranges of 2.0–346.5 μmol l?1 (?I p?=?(0.0195?±?0.0043)C CA?+?(0.7648?±?0.0397) (r 2?=?0.9948)) and 346.5–1,912.5 μmol l?1 (?I p?=?(0.0100?±?0.0026)C CA?+?(3.8981?±?0.0828) (r 2?=?0.9911)) with a detection limit of 0.8 μmol l?1. Finally, the PrH/MWCNTs CPE was successfully applied for the determination of CA in urine and drug samples with satisfactory results.  相似文献   

18.
The ionic liquid polymer electrolyte (IL-PE) membrane is prepared by ultraviolet (UV) cross-linking technology with polyurethane acrylate (PUA), methyl methacrylate (MMA), ionic liquid (Py13TFSI), lithium salt (LiTFSI), ethylene glycol dimethacrylate (EGDMA), and benzoyl peroxide (BPO). N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py13TFSI) ionic liquid is synthesized by mixing N-methyl-N-propyl pyrrolidinium bromide (Py13Br) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The addition of Py13TFSI to polymer electrolyte membranes leads to network structures by the chain cross-linking. The resultant electrolyte membranes display the room temperature ionic conductivity of 1.37 × 10?3 S cm?1 and the lithium ions transference number of 0.22. The electrochemical stability window of IL-PE is about 4.8 V (vs. Li+/Li), indicating sufficient electrochemical stability. The interfacial resistances between the IL-PE and the electrodes have the less change after 10 cycles than before 10 cycles. IL-PE has better compatibility with the LiFePO4 electrode and the Li electrode after 10 cycles. The first discharge performance of Li/IL-PE/LiFePO4 half-cell shows a capacity of 151.9 mAh g?1 and coulombic efficiency of 87.9%. The discharge capacity is 131.9 mAh g?1 with 95.5% coulombic efficiency after 80 cycles. Therefore, the battery using the IL-PE exhibits a good cycle and rate performance.  相似文献   

19.
In this paper, porous CuS film has been successfully prepared by a facile method and employed as a counter electrode (CE) in quantum-dot-sensitized solar cells (QDSSCs) for its highest catalytic activity. This CuS thin film was deposited on FTO substrate via spin coating process which is simple to operate, and its electrochemical properties were further studied by EIS and Tafel measurement. With the cycling time of depositing CuS up to 8, it displays high electrocatalytic activity toward polysulfide reduction, rationalizing the improved QDSSCs performance. Using the CdS/CdSe-sensitized QDSSCs, the cells exhibit improved short-circuit photocurrent density (J sc) and fill factor (FF), achieving solar cell conversion efficiency (η) as high as 5.60 % under AM 1.5 illumination of 100 mW cm?2. This work provides a novel and simple method for the preparation of CEs, which could be utilized in other metal sulfides CEs for QDSSCs.  相似文献   

20.
In this work, we have successfully synthesized the S/N dual-doped carbon nanosheets which are strongly coupled with Co x O y nanoparticles (SNCC) by calcinating cobalt/dithizone complex precursor following KOH activation. The SNCC as anode shows the wonderful charge capacity of 1200 mAh g?1 after 400th cycles at 1000 mA g?1 for Li-ion storage. The superior electrochemical properties illustrate that the SNCC can be a candidate for high-performance anode material of lithium-ion batteries (LIBs) because of the facile preparation method and excellent performance. Significantly, we also discuss the mechanism for the SNCC from the strong synergistic effect perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号