首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We show that a number of conditions on oriented graphs, all of which are satisfied with high probability by randomly oriented graphs, are equivalent. These equivalences are similar to those given by Chung, Graham, and Wilson [5] in the case of unoriented graphs, and by Chung and Graham [3] in the case of tournaments. Indeed, our main theorem extends to the case of a general underlying graph G, the main result of [3] which corresponds to the case that G is complete. One interesting aspect of these results is that exactly two of the four orientations of a four cycle can be used for a quasi‐randomness condition, i.e., if the number of appearances they make in D is close to the expected number in a random orientation of the same underlying graph, then the same is true for every small oriented graph H.  相似文献   

2.
Quasi‐random graphs can be informally described as graphs whose edge distribution closely resembles that of a truly random graph of the same edge density. Recently, Shapira and Yuster proved the following result on quasi‐randomness of graphs. Let k ≥ 2 be a fixed integer, α1,…,αk be positive reals satisfying \begin{align*}\sum_{i} \alpha_i = 1\end{align*} and (α1,…,αk)≠(1/k,…,1/k), and G be a graph on n vertices. If for every partition of the vertices of G into sets V 1,…,V k of size α1n,…,αkn, the number of complete graphs on k vertices which have exactly one vertex in each of these sets is similar to what we would expect in a random graph, then the graph is quasi‐random. However, the method of quasi‐random hypergraphs they used did not provide enough information to resolve the case (1/k,…,1/k) for graphs. In their work, Shapira and Yuster asked whether this case also forces the graph to be quasi‐random. Janson also posed the same question in his study of quasi‐randomness under the framework of graph limits. In this paper, we positively answer their question. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

3.
We show that if a graph G has the property that all subsets of vertices of size n/4 contain the “correct” number of triangles one would expect to find in a random graph G(n, 1/2), then G behaves like a random graph, that is, it is quasi-random in the sense of Chung, Graham, and Wilson [6]. This answers positively an open problem of Simonovits and Sós [10], who showed that in order to deduce that G is quasi-random one needs to assume that all sets of vertices have the correct number of triangles. A similar improvement of [10] is also obtained for any fixed graph other than the triangle, and for any edge density other than 1/2. The proof relies on a theorem of Gottlieb [7] in algebraic combinatorics, concerning the rank of set inclusion matrices.  相似文献   

4.
Chung and Graham began the systematic study of k‐uniform hypergraph quasirandom properties soon after the foundational results of Thomason and Chung‐Graham‐Wilson on quasirandom graphs. One feature that became apparent in the early work on k‐uniform hypergraph quasirandomness is that properties that are equivalent for graphs are not equivalent for hypergraphs, and thus hypergraphs enjoy a variety of inequivalent quasirandom properties. In the past two decades, there has been an intensive study of these disparate notions of quasirandomness for hypergraphs, and an open problem that has emerged is to determine the relationship between them. Our main result is to determine the poset of implications between these quasirandom properties. This answers a recent question of Chung and continues a project begun by Chung and Graham in their first paper on hypergraph quasirandomness in the early 1990's. © 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46,762–800, 2015  相似文献   

5.
The quasi‐random theory for graphs mainly focuses on a large equivalent class of graph properties each of which can be used as a certificate for randomness. For k ‐graphs (i.e., k ‐uniform hypergraphs), an analogous quasi‐random class contains various equivalent graph properties including the kdiscrepancy property (bounding the number of edges in the generalized induced subgraph determined by any given (k ‐ 1) ‐graph on the same vertex set) as well as the kdeviation property (bounding the occurrences of “octahedron”, a generalization of 4 ‐cycle). In a 1990 paper (Chung, Random Struct Algorithms 1 (1990) 363‐382), a weaker notion of l ‐discrepancy properties for k ‐graphs was introduced for forming a nested chain of quasi‐random classes, but the proof for showing the equivalence of l ‐discrepancy and l ‐deviation, for 2 ≤ l < k, contains an error. An additional parameter is needed in the definition of discrepancy, because of the rich and complex structure in hypergraphs. In this note, we introduce the notion of (l,s) ‐discrepancy for k ‐graphs and prove that the equivalence of the (k,s) ‐discrepancy and the s ‐deviation for 1 ≤ sk. We remark that this refined notion of discrepancy seems to point to a lattice structure in relating various quasi‐random classes for hypergraphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

6.
In this article, we study a new product of graphs called tight product. A graph H is said to be a tight product of two (undirected multi) graphs G1 and G2, if V(H) = V(G1) × V(G2) and both projection maps V(H)→V(G1) and V(H)→V(G2) are covering maps. It is not a priori clear when two given graphs have a tight product (in fact, it is NP‐hard to decide). We investigate the conditions under which this is possible. This perspective yields a new characterization of class‐1 (2k+ 1)‐regular graphs. We also obtain a new model of random d‐regular graphs whose second eigenvalue is almost surely at most O(d3/4). This construction resembles random graph lifts, but requires fewer random bits. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

7.
For every fixed graph H and every fixed 0 < α < 1, we show that if a graph G has the property that all subsets of size αn contain the “correct” number of copies of H one would expect to find in the random graph G(n,p) then G behaves like the random graph G(n,p); that is, it is p-quasi-random in the sense of Chung, Graham, and Wilson [4]. This solves a conjecture raised by Shapira [8] and solves in a strong sense an open problem of Simonovits and Sós [9].  相似文献   

8.
A graph G is a quasi‐line graph if for every vertex vV(G), the set of neighbors of v in G can be expressed as the union of two cliques. The class of quasi‐line graphs is a proper superset of the class of line graphs. Hadwiger's conjecture states that if a graph G is not t‐colorable then it contains Kt + 1 as a minor. This conjecture has been proved for line graphs by Reed and Seymour. We extend their result to all quasi‐line graphs. © 2008 Wiley Periodicals, Inc. J Graph Theory 59: 17–33, 2008  相似文献   

9.
In 1960 Ore proved the following theorem: Let G be a graph of order n. If d(u) + d(v)≥n for every pair of nonadjacent vertices u and v, then G is hamiltonian. Since then for several other graph properties similar sufficient degree conditions have been obtained, so‐called “Ore‐type degree conditions”. In [R. J. Faudree, R. H. Schelp, A. Saito, and I. Schiermeyer, Discrete Math 307 (2007), 873–877], Faudree et al. strengthened Ore's theorem as follows: They determined the maximum number of pairs of nonadjacent vertices that can have degree sum less than n (i.e. violate Ore's condition) but still imply that the graph is hamiltonian. In this article we prove that for some other graph properties the corresponding Ore‐type degree conditions can be strengthened as well. These graph properties include traceable graphs, hamiltonian‐connected graphs, k‐leaf‐connected graphs, pancyclic graphs, and graphs having a 2‐factor with two components. Graph closures are computed to show these results. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 314–323, 2012  相似文献   

10.
For 1 ≤ dk, let Kk/d be the graph with vertices 0, 1, …, k ? 1, in which ij if d ≤ |i ? j| ≤ k ? d. The circular chromatic number χc(G) of a graph G is the minimum of those k/d for which G admits a homomorphism to Kk/d. The circular clique number ωc(G) of G is the maximum of those k/d for which Kk/d admits a homomorphism to G. A graph G is circular perfect if for every induced subgraph H of G, we have χc(H) = ωc(H). In this paper, we prove that if G is circular perfect then for every vertex x of G, NG[x] is a perfect graph. Conversely, we prove that if for every vertex x of G, NG[x] is a perfect graph and G ? N[x] is a bipartite graph with no induced P5 (the path with five vertices), then G is a circular perfect graph. In a companion paper, we apply the main result of this paper to prove an analog of Haj?os theorem for circular chromatic number for k/d ≥ 3. Namely, we shall design a few graph operations and prove that for any k/d ≥ 3, starting from the graph Kk/d, one can construct all graphs of circular chromatic number at least k/d by repeatedly applying these graph operations. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 186–209, 2005  相似文献   

11.
In this article, we consider the circular chromatic number χc(G) of series‐parallel graphs G. It is well known that series‐parallel graphs have chromatic number at most 3. Hence, their circular chromatic numbers are at most 3. If a series‐parallel graph G contains a triangle, then both the chromatic number and the circular chromatic number of G are indeed equal to 3. We shall show that if a series‐parallel graph G has girth at least 2 ⌊(3k − 1)/2⌋, then χc(G) ≤ 4k/(2k − 1). The special case k = 2 of this result implies that a triangle free series‐parallel graph G has circular chromatic number at most 8/3. Therefore, the circular chromatic number of a series‐parallel graph (and of a K4‐minor free graph) is either 3 or at most 8/3. This is in sharp contrast to recent results of Moser [5] and Zhu [14], which imply that the circular chromatic number of K5‐minor free graphs are precisely all rational numbers in the interval [2, 4]. We shall also construct examples to demonstrate the sharpness of the bound given in this article. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 14–24, 2000  相似文献   

12.
The following question was raised by Bruce Richter. Let G be a planar, 3‐connected graph that is not a complete graph. Denoting by d(v) the degree of vertex v, is G L‐list colorable for every list assignment L with |L(v)| = min{d(v), 6} for all vV(G)? More generally, we ask for which pairs (r, k) the following question has an affirmative answer. Let r and k be the integers and let G be a K5‐minor‐free r‐connected graph that is not a Gallai tree (i.e. at least one block of G is neither a complete graph nor an odd cycle). Is G L‐list colorable for every list assignment L with |L(v)| = min{d(v), k} for all vV(G)? We investigate this question by considering the components of G[Sk], where Sk: = {vV(G)|d(v)8k} is the set of vertices with small degree in G. We are especially interested in the minimum distance d(Sk) in G between the components of G[Sk]. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:18–30, 2012  相似文献   

13.
A noncomplete graph G is called an (n, k)‐graph if it is n‐connected and GX is not (n − |X| + 1)‐connected for any XV(G) with |X| ≤ k. Mader conjectured that for k ≥ 3 the graph K2k + 2 − (1‐factor) is the unique (2k, k)‐graph. We settle this conjecture for strongly regular graphs, for edge transitive graphs, and for vertex transitive graphs. © 2000 John Wiley & Sons, Inc. J Graph Theory 36: 35–51, 2001  相似文献   

14.
We analyze Markov chains for generating a random k‐coloring of a random graph Gn,d/n. When the average degree d is constant, a random graph has maximum degree Θ(log n/log log n), with high probability. We show that, with high probability, an efficient procedure can generate an almost uniformly random k‐coloring when k = Θ(log log n/log log log n), i.e., with many fewer colors than the maximum degree. Previous results hold for a more general class of graphs, but always require more colors than the maximum degree. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2006  相似文献   

15.
In this paper we shall investigate the connection between the Szemerédi Regularity Lemma and quasirandom graph sequences, defined by Chung, Graham, and Wilson, and also, slightly differently, by Thomason. We prove that a graph sequence (Gn) is quasirandom if and only if in the Szemerédi partitions of Gn almost all densities are ½ + o(l).  相似文献   

16.
Let S(r) denote a circle of circumference r. The circular consecutive choosability chcc(G) of a graph G is the least real number t such that for any r≥χc(G), if each vertex v is assigned a closed interval L(v) of length t on S(r), then there is a circular r‐coloring f of G such that f(v)∈L(v). We investigate, for a graph, the relations between its circular consecutive choosability and choosability. It is proved that for any positive integer k, if a graph G is k‐choosable, then chcc(G)?k + 1 ? 1/k; moreover, the bound is sharp for k≥3. For k = 2, it is proved that if G is 2‐choosable then chcc(G)?2, while the equality holds if and only if G contains a cycle. In addition, we prove that there exist circular consecutive 2‐choosable graphs which are not 2‐choosable. In particular, it is shown that chcc(G) = 2 holds for all cycles and for K2, n with n≥2. On the other hand, we prove that chcc(G)>2 holds for many generalized theta graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 67: 178‐197, 2011  相似文献   

17.
An edge e of a k-connected graph G is said to be a removable edge if G?e is still k-connected. A k-connected graph G is said to be a quasi (k+1)-connected if G has no nontrivial k-separator. The existence of removable edges of 3-connected and 4-connected graphs and some properties of quasi k-connected graphs have been investigated [D.A. Holton, B. Jackson, A. Saito, N.C. Wormale, Removable edges in 3-connected graphs, J. Graph Theory 14(4) (1990) 465-473; H. Jiang, J. Su, Minimum degree of minimally quasi (k+1)-connected graphs, J. Math. Study 35 (2002) 187-193; T. Politof, A. Satyanarayana, Minors of quasi 4-connected graphs, Discrete Math. 126 (1994) 245-256; T. Politof, A. Satyanarayana, The structure of quasi 4-connected graphs, Discrete Math. 161 (1996) 217-228; J. Su, The number of removable edges in 3-connected graphs, J. Combin. Theory Ser. B 75(1) (1999) 74-87; J. Yin, Removable edges and constructions of 4-connected graphs, J. Systems Sci. Math. Sci. 19(4) (1999) 434-438]. In this paper, we first investigate the relation between quasi connectivity and removable edges. Based on the relation, the existence of removable edges in k-connected graphs (k?5) is investigated. It is proved that a 5-connected graph has no removable edge if and only if it is isomorphic to K6. For a k-connected graph G such that end vertices of any edge of G have at most k-3 common adjacent vertices, it is also proved that G has a removable edge. Consequently, a recursive construction method of 5-connected graphs is established, that is, any 5-connected graph can be obtained from K6 by a number of θ+-operations. We conjecture that, if k is even, a k-connected graph G without removable edge is isomorphic to either Kk+1 or the graph Hk/2+1 obtained from Kk+2 by removing k/2+1 disjoint edges, and, if k is odd, G is isomorphic to Kk+1.  相似文献   

18.
A “cover tour” of a connected graph G from a vertex x is a random walk that begins at x, moves at each step with equal probability to any neighbor of its current vertex, and ends when it has hit every vertex of G. The cycle Cn is well known to have the curious property that a cover tour from any vertex is equally likely to end at any other vertex; the complete graph Kn shares this property, trivially, by symmetry. Ronald L. Graham has asked whether there are any other graphs with this property; we show that there are not. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
Stevanović  Dragan 《Order》2022,39(1):77-94

The k-th spectral moment Mk(G) of the adjacency matrix of a graph G represents the number of closed walks of length k in G. We study here the partial order ? of graphs, defined by G ? H if Mk(G) ≤ Mk(H) for all k ≥?0, and are interested in the question when is ? a linear order within a specified set of graphs? Our main result is that ? is a linear order on each set of starlike trees with constant number of vertices. Recall that a connected graph G is a starlike tree if it has a vertex u such that the components of G ? u are paths, called the branches of G. It turns out that the ? ordering of starlike trees with constant number of vertices coincides with the shortlex order of sorted sequence of their branch lengths.

  相似文献   

20.
We present a new condition on the degree sums of a graph that implies the existence of a long cycle. Let c(G) denote the length of a longest cycle in the graph G and let m be any positive integer. Suppose G is a 2-connected graph with vertices x1,…,xn and edge set E that satisfies the property that, for any two integers j and k with j < k, xjxk ? E, d(xi) ? j and d(xk) ? K - 1, we have (1) d(xi) + d(xk ? m if j + k ? n and (2) if j + k < n, either m ? n or d(xj) + d(xk) ? min(K + 1,m). Then c(G) ? min(m, n). This result unifies previous results of J.C. Bermond and M. Las Vergnas, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号