首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Previously published values of state-to-state integral inelastic cross sections for the H2(Ji)—M (M  H, He, Li, Li+, H2, CO2) systems are fitted to the exponential gap relation for the rotational inelastic process to obtain the C value that reflects the magnitudes of relative cross sections. While the vibration of the rotor seems to have little influence, the C value is shown to decrease dramatically with increase in initial collision energy Ti, ΔCTi being larger at lower Ti for all systems analysed, in accord with the prediction of the surprisal synthesis of Procaccia and Levine. For the only case of H2(Ji)-Li+ for which results are available for several Ji, C decreases with increase in Ji or Ji(Ji + 1)). The C value predicted by Procaccia and Levine for H2M systems falls within the range of C values calculated for the various collision partners. However, there is a noticeable change in C (albeit within a factor of two) with change in M, indicating that dynamical factors do play an important role in rotational inelastic processes.  相似文献   

2.
Integral elastic and rotationally inelastic cross sections for HCl (Ji = 0, 1) + Ar collisions at a collision energy of 1.785 kcal/mole are rep  相似文献   

3.
The O-H bond dissociation energies (D O-H) in five alcohols and six acids have been determined from experimental data (rate constants of radical reactions). The ratio of the rate constants of the reactions R1O˙+RH→R1OH+R˙ and R i O˙+RH→R i OH+R˙ and the intersecting parabolas method are used in the estimation procedure. The D O-H values are used to calculate the activation energies and rate constants for hydrogen abstraction from 2-methylbutane, butene-1, and cumene by alkoxyl and carboxyl radicals. The geometric parameters of the transition state are calculated for these reactions.  相似文献   

4.
Impact parameter calculations for the non-reactive H+ + H2 (ni = 0) → H+ + H2 (nf) collision are reported for energies 10 eV ? Ecm ? 200 eV describing the rotational motion of the molecule in the sudden limit. The time-dependent Schrödinger equation for the vibrational motion has been solved by close coupling techniques expanding the vibrational wavefunction into both harmonic and numerically exact H2 bound states. The convergence in vibrational basis sets, where up to six vibrational levels are considered, becomes worse with decreasing energy and increasing inelasticity. Furthermore, the harmonic wavefunctions are not suitable over a large range of energies to calculate proper cross sections. The various integral and differential cross sections have been compared with the classical results of Giese and Gentry.  相似文献   

5.
The infrared chemiluminescence technique has been used to obtain k(V′, R′, T′) (V′, R′, Tt? are product vibrational, rotational and translational energies) for the reactions (i) H + ClNO → HCl + NO (energy-release Etot′ = 68.5 kcal mole?1) and (ii) H + CII → HCl + I (Etot′ = 55.8 kcal mole?1). Reaction (i) exhibits inefficient conversion of energy-release into vibration in the new bond, characteristic of a light attacking atom reacting on a repulsive energy-surface. Reaction (ii) has a bimodal HCl product-energy-distribution suggesting that 18% of the reaction proceeds by direct attack at the Cl end of CII to yield low V′ and R′, and 82% by indirect reaction from the 1 end to give high V′ and R′.  相似文献   

6.
Ultrasonic velocity (2 MHz) and acoustic parameters of poly(R,R-4,4-cyclohexylidene diphenylene diphenyl ether-4,4-disulfonate) (PS-1: RRH; PS-2: RCH3 and RH; PS-4: RCH3 and RCl) solutions (chloroform, 1,2-dichloroethane and tetrahydrofuran (THF)) at 30, 35 and 40 °C have been determined to understand the effect of methyl and chlorine substituents on molecular interactions to support solvophilic or solvophobic nature of the polymers. The linear increase of U, Z, R, b, π, (α/f2)Cl and τ with C and decrease of Ks, r, Lf and Vf with C suggested the existence of strong molecular interactions and hence solvophilic nature of the polymers, which is supported by positive values of Sn. A rise in temperature resulted in less ordered structure and more spacing between the molecules. The solvophilic nature of the polymers caused nonlinear variation of φv2 and φKs with C and T. A powerful solvation exists in THF system. Structural modification is found above 2% for PS-2 and PS-4. The decrease of Sn with C and T indicated the presence of polymer-polymer interactions. The decrease of Sn with T is due to disruption of the structure formed by predominant thermal energy over molecular interaction energy.  相似文献   

7.
We report differential cross section measurements with high angular resolution for different channels of the inelastic processes He++Ne→He++Ne* and He++Ne→He*+Ne+, for collision energies between 100 and 200 eV. For the Ne states (2p 53s)1,3 P 1, which decay optically, we determined the fraction with the alignment at right angles to the scattering plane. The results are used to discuss the mechanism of the processes and the influence of the spin-orbit interaction upon the collision.  相似文献   

8.
Potential energies for molecular states dissociating into Ne*(1 P 1,3 P 0,1,2) + He(1 S 0) have been calculated ab initio within the distance range 4–100a 0. The SCF energy (without spin-orbit interaction) is optimized on the lowest3Σ state. After CI, the four Λ-states (1,3Σ,1,3Π)are obtained. They dissociate into Ne*(1,3 P) + He(1 S). All of them are repulsive atR ? 8a 0, they exhibit shallow wells around 12a 0 and have a correct asymptotic behaviour (~ -R ?6). The spin-orbit interaction is introduced, using the Cohen-Schneider scheme, and adiabatic Ω-potentials are derived. The collision at low energy (E ≦ 124 meV) is described in the frame of a fragment-state basis. By means of a deflation procedure, it is shown that states dissociating into Ne*(1 P 1) + He can be eliminated, which lead to a 9 × 9 interaction matrix dynamically equivalent to the original 12 × 12 matrix, in the subspace of interest. Collision channels are defined by angular momenta,J (total),j (of Ne*) andl (of the relative motion). Scattering radial equations are solved by the algorithm of Gordon and theS matrix is derived. Two sets of physically meaningful scattering amplitudes (and differential cross sections) are constructed, referred to the incident axis or to the initial and final directions of the internuclear axis. Polarization effects are discussed. The case of a quantization axis perpendicular to the collision plane is also mentioned.  相似文献   

9.
Weakly bound molecular complexes with more than one well-defined structures provide us with an unique opportunity to investigate dynamic processes induced by intermolecular interactions with specific orientations. The relative orientation of the two interacting molecules or atoms is defined by the complex structure. The effect of the orientation in the spin changing collisions glyoxal(S1)+Ar → glyoxal(T1)+Ar and acetylene (S1)+Ar → acetylene(T)+Ar have been studied by measuring the intersystem crossing (ISC) rates of the glyoxal(S1)·Ar and acetylene(S1)·Ar complexes with different isomeric structures. Results show that there is a strong orientation dependence in the ISC of glyoxal(S1) induced by interaction with the Ar atom: the Ar atom positioned in the molecular plane is much more effective than in the out-of-plane position in inducing the S1 → T1 transition of glyoxal. On the other hand, studies of acetylene(S1)·Ar complexes indicate that the Ar-induced ISC rates are nearly identical for the in-plane and out-of-plane positions. Orientation dependence in the collision induced vibrational relaxation process C2H2(S1,v i )+Ar → C2H2(S1,v f <v i )+Ar is also studied by measuring the vibrational predissociation rates of the acetylene(S1)·Ar complex isomers. The results indicate that collisions of C2H2(S1,v 3=3, 4) with Ar at two orthogonal orientations are equally effective in causing vibrational relaxation of C2H2.  相似文献   

10.
Integral reactive cross sections for chemi-ionization have been measured in a crossed-beam experiment for Ba, Sr + SF6 → BaF+, SrF+ + SF5? and Ca, Sr + NF3 → CaF+, SrF+ + NF2? at collision energies Ec.m. < 4 eV. The experimental results confirm a collision complex. The applicability of RRKM theory to chemi-ionization of polyatomic molecules is discussed. The presence of competing neutral-product reactions, included in the calculation, is important for the determination of dynamical and statistical properties of the intermediate states formed. The slope of the chemi-ionization cross section as a function of collision energy indicates directly that all vibrational degrees of freedom are activated.  相似文献   

11.
The Heisenberg exchange coupling parameter J (H = −2JSi · Sj) characterises the isotropic magnetic interaction between unpaired electrons, and it is one of the most important spin Hamiltonian parameters of multi-spin open shell systems. The J value is related to the energy difference between high-spin and low-spin states, and thus computing the energies of individual spin states are necessary to obtain the J values from quantum chemical calculations. Here, we propose a quantum algorithm, B̲ayesian ex̲change coupling parameter calculator with b̲roken-symmetry wave functions (BxB), which is capable of computing the J value directly, without calculating the energies of individual spin states. The BxB algorithm is composed of the quantum simulations of the time evolution of a broken-symmetry wave function under the Hamiltonian with an additional term jS2, the wave function overlap estimation with the SWAP test, and Bayesian optimisation of the parameter j. Numerical quantum circuit simulations for H2 under a covalent bond dissociation, C, O, Si, NH, OH+, CH2, NF, O2, and triple bond dissociated N2 molecule revealed that the BxB can compute the J value within 1 kcal mol−1 of errors with less computational costs than conventional quantum phase estimation-based approaches.

A quantum algorithm “Bayesian exchange coupling parameter calculator with broken-symmetry wave function (BxB)” enables us to calculate Heisenberg exchange coupling parameter J without inspecting total energies of individual spin states, within 1 kcal mol−1 of energy tolerance.  相似文献   

12.
The effects of reaction barrier height and initial rotational excitation of the reactants on the overall rate of H atom exchange between atomic chlorine and HCl (v = 0) and on the 0 → 1 vibrational excitation of HCl via reactive and nonreactive collisions have been investigated using quasiclassical trajectory techniques. Two empirical LEPS potential energy surfaces were employed in the calculations having reaction barrier heights of 9.84 and 7.05 kcal mol?1. Trajectory studies of planar collisions were carried out on each surface over a range of relative translational energies with the ground-state HCI collision partner given initial rotational excitation corresponding J = 0, 3, and 7. Initial molecular rotation was found to be relatively inefficient in promoting the H atom exchange; the computed rate coefficient for H atom exchange between Cl + HCl (v = 0, J = 7) was only 4 times larger than that for CI + HCI (v = 0, J = 0). The vibrational excitation rate coefficient exhibited a stronger dependence on initial molecular rotational excitation. The observed increase in the vibrational excitation rate coefficient with increasing initial molecular rotational excitation was due primarily to nonreactive intermolecular RV energy transfer. The vibrational excitation rate coefficients increase with decreasing reaction barrier height.  相似文献   

13.
The energy transfer in classical collinear (C) and perpendicular (C2v) central collisions of an atom with a Morse oscillator is compared. These collision geometries contribute in classical collisions to experimentally observed inelastic backward scattering of alkali ions from H2 molecules. For both collision geometries the equations of motion reduce to a set of only two coupled differential equations which can be easily solved numerically. The calculations show that the C2v collisions are much more effective than C collisions at all but the very lowest energies. The calculated ΔE/E versus E curves for C2v collisions using a Born-Mayer potential for the atom atom-in-molecule interaction could be fitted to the experimental results for Na+-D2 yielding reasonable potential values.  相似文献   

14.
The prototypical reaction of F+HD→DF+H was investigated at collision energies from 3.03 meV to 17.97 meV using a crossed molecular beam apparatus with multichannel Rydberg tagging time-of-flight detection. Significant contributions from both the Born-Oppenheimer (BO) forbidden reaction F*(2P1/2)+HD→DF+H and the BO-allowed reaction F(2P3/2)+HD→DF+H were observed. In the backward scattering direction, the contribution from the BO-forbidden reaction F*(2P1/2)+HD was found to be considerably greater than the BO-allowed reaction F(2P3/2)+HD, indicating the non-adiabatic effects play an important role in the dynamics of the title reaction at low collision energies. Collision-energy dependence of differential cross sections (DCSs) in the backward scattering direction was found to be monotonously decreased as the collision energy decreases, which does not support the existence of resonance states in this energy range. DCSs of both BO-allowed and BO-forbidden reactions were measured at seven collision energies from 3.03 meV to 17.97 meV. It is quite unexpected that the angular distribution gradually shifts from backward to sideway as the collision energy decreases from 17.97 meV to 3.03 meV, suggesting some unknown mechanisms may exist at low collision energies.  相似文献   

15.
The selective laser excitation and induced fluorescence observation technique has been used to study rotationally inelastic collisions of I2*(B 0u+, υ = 15,j) with I2, 3He, 4He, Ne, Ar, H2 and D2. For each collision partner, several initial rotational levels ranging from ji = 12 up to ji = 146 have been excited. For purely rotational transfer within the υ = 15 level, our data are perfectly consistent with energy sudden (eventually corrected) scaling laws. Thus, any thermally averaged rate constant, k(jijf), can be expressed as a function of the basis rate constants k(l → 0). Furthermore, these k(l → 0) are found to follow simple empirical fitting laws. Consequently any k(jijf) can be predicted given a set of two or three fitting parameters. Collisions with relatively heavy particles (I2, Ar and Ne) are well described by using the inverse power fitting law k(l → 0) = b[l(l+1)], where b = 1.7, 1.2 and 1.2×10?10 cm3 s?1 and γ = 1.08, 1.02 and 1.17 for I2*-Ne, I2*-Ar and I2*-I2 collisions respectively. For collisions with light particles (3He, 4He, H2 and D2), k(l → 0) shows a sharp decrease with l which can be accounted for by a hybrid power-exponential fitting law k(l → 0) = b[l(l+1)] exp[-l(l+1)/l* (l*+1)], where b = 0.84, 0.71, 2.77 and 2.78×10?10 cm3 s?1l+ = 20.6, 23.1, 18.8 and 31.4, and γ = 0.66, 0.66, 0.78 and 0.91 for I2*-3He, I2*-He, I2*-H2 and I2*-D2 collisions, respectively. We confirm that the rotational transfer dynamics in heavy molecules is mainly governed by angular momentum exchange.  相似文献   

16.
The cross sections for the excitation energy transfer between the 32 P J states of sodium atoms by collisions with ground-state potassium atoms have been measured by resonant Doppler-free two-photon spectroscopy, where the population densities of directly pumped and collisionally excited Na(3P J )(J=1/2, 3/2) levels were probed by counter-propagating Na(3P J ) → Na(4D 3/2, 5/2) excitation and detected with the thermionic diode. Cross sections of σ(3P 1/2 → 3P 3/2)=190 Å2±20% and σ(3P 3/2 → 3P 1/2)=100 Å2±20% were found. The theoretical calculations taking into account the long-range interaction termsR ?6,R ?8 andR ?10 yield a value σ(3P 1/2 → 3P 3/2)=165 Å2. On the basis of these long-range interaction potentials the differential cross section has been calculated and compared with recently published experimental data. Very good agreement between the theoretical and experimental data was found.  相似文献   

17.
(S)‐1‐(Methylaminocarbonyl)‐3‐phenylpropanaminium chloride (S2·HCl), C10H15N2O+·Cl, crystallizes in the orthorhombic space group P212121 with a single formula unit per asymmetric unit. (5R/S)‐5‐Benzyl‐2,2,3‐trimethyl‐4‐oxoimidazolidin‐1‐ium chloride (R3 and S3), C13H19N2O+·Cl, crystallize in the same space group as S2·HCl but contain three symmetry‐independent formula units. (R/S)‐5‐Benzyl‐2,2,3‐trimethyl‐4‐oxoimidazolidin‐1‐ium chloride monohydrate (R4 and S4), C13H19N2O+·Cl·H2O, crystallize in the space group P21 with a single formula unit per asymmetric unit. Calculations at the B3LYP/6–31G(d,p) and B3LYP/6–311G(d,p) levels of the conformational energies of the cation in R3, S3, R4 and S4 indicate that the ideal gas‐phase global energy minimum conformation is not observed in the solid state. Rather, the effects of hydrogen‐bonding and van der Waals interactions in the crystal structure cause the molecules to adopt higher‐energy conformations, which correspond to local minima in the molecular potential energy surface.  相似文献   

18.
The neutral products arising during the collisionally activated dissociation of protonated oligopeptides (MH+) are post-ionized by collision and detected in neutral fragment-reionization (+NfR+) mass spectra. For the isomeric tripeptides Ala-Gly-Gly, Gly-Ala-Gly and Gly-Gly-Ala, the amino acid and dipeptide losses from the C-terminus and the diketopiperazine losses from the N-terminus allow for differentiation. These neutral fragments are identified in the corresponding +NfR+ spectra by comparison to reference collision-induced dissociative ionization (CIDI) mass spectra of individual amino acids, dipeptides and diketopiperazines. Peptides with distinct C-termini but otherwise identical sequences are found to yield +NfR+ products that are characteristic of the respective C-terminal amino acid. This is demonstrated for several peptide pairs, including leucine- and methionine-enkephalin. In general, +NfR+ spectra are dominated by the heavier neutral losses; further, +NfR+ and CIDI cause extensive dissociation, indicating that the collisional ionization process imparts high average internal energies.  相似文献   

19.
In this paper we present the results of an experimental study of intermolecular electronic energy transfer (EET) from the short-lived Second excited singlet state of rhodamine 6G (R6G) to the ground state of 2,5-bis [5′-tert-butyl-2-benzoxazolyl] thiophene (BBOT). The S2 state of the donor was excited by sequential, time-delayed, two-photon excitation (STDTPE) utilizing the second harmonic and the first harmonic of a mode-locked Nd3+: glass laser, while the EET process was interrogated by monitoring the enhancement of the S1 → S0 fluorescence of BBOT. The enhancement of the fluorescence intensity of BBOT was found to be linear in the energies of the two exciting pulses, and linear in the concentration of the energy acceptor (over the BBOT concentration range of (0.3–7) × 10?5 M), which is in accord with the predictions of the Forster—Dexter mechanism for resonant EET from an ultrashort-lived donor state at low acceptor concentrations. Quantitative measurements of the S2 → S0 fluorescence yield in R6G solution directly excited by STDTPE and of the S1 → S0 fluorescence of BBOT from R6G + BBOT solutions resulting from EET led to the values of YD(S2 → S0) = (2.1 ± 0.5) × 10?6 for the emission quantum yield of the S2 state of R6G and τrD(S2) ≈ 3 × 10?14 s for the lifetime of the metastable S2 state of this molecule.  相似文献   

20.
Two-photon induced fluorescence and resonance-enhanced photoionization have been observed in atomic sulfur originating from both the 3P2,1,0 and the 1D2 states. Sulfur atoms are generated by the sequential multiphoton dissociation of CS2 at probing wavelengths. The two-photon absorption process involves the 3 3P2,1,0 → 4 3P2,0,1 or the 3 1D2 → 4 1F3 transitions with resolution of the individual J″ → J′ transitions in most cases. Intensities of the 33PJ → 4 3PJ transitions have been compared with Hartree-Fock calculated transition probabilities from the analogous transitions in atomic oxygen. Photoionization is observed in a three-photon (two to resonance) ionization originating from the 3P2,1,0 and the 1D2 states. Induced fluorescence is observed at 167 and 180 nm which is dipole-allowed radiation from the intermediate 3S01 and 1D02 states, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号