首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove nonlinear stability of compactly supported expanding star solutions of the mass‐critical gravitational Euler‐Poisson system. These special solutions were discovered by Goldreich and Weber in 1980. The expansion rate of such solutions can be either self‐similar or non‐self‐similar (linear), and we treat both types. An important outcome of our stability results is the existence of a new class of global‐in‐time radially symmetric solutions, which are not homologous and therefore not encompassed by the existing works. Using Lagrangian coordinates we reformulate the associated free‐boundary problem as a degenerate quasilinear wave equation on a compact spatial domain. The problem is mass‐critical with respect to an invariant rescaling and the analysis is carried out in similarity variables. © 2017 Wiley Periodicals, Inc.  相似文献   

2.
In this paper, we investigate the existence of positive solutions for singular elliptic equations with mixed Dirichlet‐Neumann boundary conditions involving Sobolev‐Hardy critical exponents and Hardy terms by using the concentration compactness principle, the strong maximum principle and the Mountain Pass lemma. We also prove, under complementary conditions, that there is no nontrivial solution if the domain is star‐shaped with respect to the origin.  相似文献   

3.
In this work, we study the existence of time periodic weak solution for the N‐dimensional Vlasov–Poisson system with boundary conditions. We start by constructing time periodic solutions with compact support in momentum and bounded electric field for a regularized system. Then, the a priori estimates follow by computations involving the conservation laws of mass, momentum and energy. One of the key point is to impose a geometric hypothesis on the domain: we suppose that its boundary is strictly star‐shaped with respect to some point of the domain. These results apply for both classical or relativistic case and for systems with several species of particles. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
We study the uniqueness and explicit derivation of the relaxed optimal solutions, corresponding to the minimization of weighted sum of potential energies for a mixture of two isotropic conductive materials on an annulus. Recently, it has been shown by Burazin and Vrdoljak that even for multiple-state problems, if the domain is spherically symmetric, then the proper relaxation of the problem by the homogenization method is equivalent to a simpler relaxed problem, stated only in terms of local proportions of given materials. This enabled explicit calculation of a solution on a ball, while problems on an annulus appeared to be more tedious. In this paper, we discuss the uniqueness of a solution of this simpler relaxed problem, when the domain is an annulus and we use the necessary and sufficient conditions of optimality to present a method for explicit calculation of the unique solution of this simpler proper relaxation, which is demonstrated on an example.  相似文献   

5.
We analyse the evolution of a system of finite faults by considering the non‐linear eigenvalue problems associated to static and dynamic solutions on unbounded domains. We restrict our investigation to the first eigenvalue (Rayleigh quotient). We point out its physical significance through a stability analysis and we give an efficient numerical algorithm able to compute it together with the corresponding eigenfunction. We consider the anti‐plane shearing on a system of finite faults under a slip‐dependent friction in a linear elastic domain, not necessarily bounded. The static problem is formulated in terms of local minima of the energy functional. We introduce the non‐linear (static) eigenvalue problem and we prove the existence of a first eigenvalue/eigenfunction characterizing the isolated local minima. For the dynamic problem, we discuss the existence of solutions with an exponential growth, to deduce a (dynamic) non‐linear eigenvalue problem. We prove the existence of a first dynamic eigenvalue and we analyse its behaviour with respect to the friction parameter. We deduce a mixed finite element discretization of the non‐linear spectral problem and we give a numerical algorithm to approach the first eigenvalue/eigenfunction. Finally we give some numerical results which include convergence tests, on a single fault and a two‐faults system, and a comparison between the non‐linear spectral results and the time evolution results. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
This paper considers transmission problem for the system of electromagneto‐elasticity having piecewise constant coefficients in a bounded domain. The result on exact boundary controllability is obtained provided the interfaces, where the coefficients have a jump discontinuity, are all star‐shaped with respect to one and the same point and the coefficients satisfy a certain monotonicity conditions. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
We consider an inverse heat conduction problem with variable coefficient on an annulus domain. In many practice applications, we cannot know the initial temperature during heat process, therefore we consider a non-characteristic Cauchy problem for the heat equation. The method of fundamental solutions is applied to solve this problem. Due to ill-posedness of this problem, we first discretize the problem and then regularize it in the form of discrete equation. Numerical tests are conducted for showing the effectiveness of the proposed method.  相似文献   

8.
We shall derive some global existence results to semilinear wave equations with a damping coefficient localized near infinity for very special initial data in H×L2. This problem is dealt with in the two‐dimensional exterior domain with a star‐shaped complement. In our result, a power p on the non‐linear term |u|p is strictly larger than the two‐dimensional Fujita‐exponent. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, we present an existence result of weak solutions for a three-dimensional problem of fluid-plate interaction in which we take into account the non linearity of the continuity equation. This non linearity does not allow, as is usually the case, to neglect the variations of the domain which leads us to study a problem defined on a time dependent domain.  相似文献   

10.
In this article, we investigate the behavior of the condition number of the stiffness matrix resulting from the approximation of a 2D Poisson problem by means of the virtual element method. It turns out that ill‐conditioning appears when considering high‐order methods or in presence of “bad‐shaped” (for instance nonuniformly star‐shaped, with small edges…) sequences of polygons. We show that in order to improve such condition number one can modify the definition of the internal moments by choosing proper polynomial functions that are not the standard monomials. We also give numerical evidence that at least for a 2D problem, standard choices for the stabilization give similar results in terms of condition number.  相似文献   

11.
We consider the Dirichlet problem for non‐divergence parabolic equation with discontinuous in t coefficients in a half space. The main result is weighted coercive estimates of solutions in anisotropic Sobolev spaces. We give an application of this result to linear and quasi‐linear parabolic equations in a bounded domain. In particular, if the boundary is of class C1,δ , δ ∈ [0, 1], then we present a coercive estimate of solutions in weighted anisotropic Sobolev spaces, where the weight is a power of the distance to the boundary (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
We prove that the solutions of a general initial boundary‐value problem of linear elastodynamics in an unbounded domain tend locally to zero as the time tends to +∞, provided the acoustic tensor satisfies the hyperbolicity condition and a non‐trapping hypothesis is assumed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
We consider a one‐dimensional continuous model of neutron star, described by a compressible Navier–Stokes system with a non‐monotone equation of state, due to the effective Skyrme nuclear interaction between particles. We study the asymptotic behaviour of globally defined solutions of a mixed free boundary problem for our model, for large time, assuming that a sufficient thermal dissipation is present. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we prove the sequential stability of weak solutions over time, in relation to the Navier–Stokes system of compressible self‐gravitating fluids in a three‐dimensional domain. As a byproduct, we show that there exists at least one non‐negative solution to the stationary problem in any bounded domain with a given mass for the adiabatic constant γ > 3 ∕ 2. In particular, for the spherically symmetric case, these conclusions still hold for γ > 4 ∕ 3 or γ = 4 ∕ 3 with a small mass. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The aim of this article is to study a nonlinear system modeling a Non-Newtonian fluid of polymer aqueous solutions. We are interested here in the existence of weak solutions for the stationary problem in a bounded plane domain or in two-dimensional exterior domain. Due to the third order of derivatives in the non-linear term, it’s difficult to obtain solutions satisfying energy inequality. But with a good choice of boundary conditions, an adapted special basis and the use of the good properties of the trilinear form associated to the non-linear term, we obtain energy solutions. The problem in bounded domains is treated and the more difficult problem on non bounded domains too.  相似文献   

16.
In this paper, the steady‐state Oseen viscous flow equations past a known or unknown obstacle are solved numerically using the method of fundamental solutions (MFS), which is free of meshes, singularities, and numerical integrations. The direct problem is linear and well‐posed, whereas the inverse problem is nonlinear and ill‐posed. For the direct problem, the MFS computations of the fluid flow characteristics (velocity, pressure, drag, and lift coefficients) are in very good agreement with the previously published results obtained using other methods for the Oseen flow past circular and elliptic cylinders, as well as past two circular cylinders. In the inverse obstacle problem the boundary data and the internal measurement of the fluid velocity are minimized using the MATLAB© optimization toolbox lsqnonlin routine. Regularization was found necessary in the case the measured data are contaminated with noise. Numerical results show accurate and stable reconstructions of various star‐shaped obstacles of circular, bean, or peanut cross‐section.  相似文献   

17.
In connection with the free boundary value problem of determining the earth's surface from measurements of gravitational potential and force-field (“the geodetic boundary problem”), an oblique derivative problem arises, where D0 is some bounded domain, star shaped with respect to the origin. In order to prove a uniquencess theorem for the geodetic boundary problem, it is essential to give estimates for (weighted) L2-norms of the second derivatives of the solutions so that their bounds can be estimated numerically if bounds for the function describing the boundary are known. In this paper a Fredholm inverse for the above problem is constructed and the second derivatives of the solutions are estimated in the desired form.  相似文献   

18.
The famous Weierstrass theorem asserts that every continuous function on a compact set in Rd can be uniformly approximated by algebraic polynomials. A related interesting problem consists in studying the same question for the important subclass of homogeneous polynomials containing only monomials of the same degree. The corresponding conjecture claims that every continuous function on the boundary of convex 0-symmetric bodies can be uniformly approximated by pairs of homogeneous polynomials. The main objective of the present paper is to review the recent progress on this conjecture and provide a new unified treatment of the same problem on non convex star like domains. It will be shown that the boundary of every 0-symmetric non convex star like domain contains an exceptional zero set so that a continuous function can be uniformly approximated on the boundary of the domain by a sum of two homogeneous polynomials if and only if the function vanishes on this zero set. Thus the Weierstrass type approximation problem for homogeneous polynomials on non convex star like domains amounts to the study of these exceptional zero sets. We will also present an extension of a theorem of Varjú which describes the exceptional zero sets for intersections of star like domains. These results combined with certain transformations of the underlying region will lead to the discovery of some new classes of convex and non convex domains for which the Weierstrass type approximation result holds for homogeneous polynomials.  相似文献   

19.
In this paper, we study an optimal control problem for the mixed boundary value problem for an elastic body with quasistatic evolution of an internal damage variable. We suppose that the evolution of microscopic cracks and cavities responsible for the damage is described by a nonlinear parabolic equation. A density of surface traction p acting on a part of boundary of an elastic body Ω is taken as a boundary control. Because the initial boundary value problem of this type can exhibit the Lavrentieff phenomenon and non‐uniqueness of weak solutions, we deal with the solvability of this problem in the class of weak variational solutions. Using the convergence concept in variable spaces and following the direct method in calculus of variations, we prove the existence of optimal and approximate solutions to the optimal control problem under rather general assumptions on the quasistatic evolution of damage. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
This work is concerned with the periodic problem for compressible non‐isentropic Euler–Maxwell systems with a temperature damping term arising in plasmas. For this problem, we prove the global in time existence of a smooth solution around a given non‐constant steady state with the help of an induction argument on the order of the mixed time‐space derivatives of solutions in energy estimates. Moreover, we also show the convergence of the solution to this steady state as the time goes to the infinity. This phenomenon on the charge transport shows the essential relation of the systems with the non‐isentropic Euler–Maxwell and the isentropic Euler–Maxwell systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号