首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A novel affinity covalent immobilization technique of glucoamylase enzyme onto ρ-benzoquinone-activated alginate beads was presented and compared with traditional entrapment one. Factors affecting the immobilization process such as enzyme concentration, alginate concentration, calcium chloride concentration, cross-linking time, and temperature were studied. No shift in the optimum temperature and pH of immobilized enzymes was observed. In addition, K m values of free and entrapped glucoamylase were found to be almost identical, while the covalently immobilized enzyme shows the lowest affinity for substrate. In accordance, V m value of covalently immobilized enzyme was found lowest among free and immobilized counter parts. On the other hand, the retained activity of covalently immobilized glucoamylase has been improved and was found higher than that of entrapped one. Finally, the industrial applicability of covalently immobilized glucoamylase has been investigated through monitoring both shelf and operational stability characters. The covalently immobilized enzyme kept its activity over 36 days of shelf storage and after 30 repeated use runs. Drying the catalytic beads greatly reduced its activity in the beginning but recovered its lost part during use. In general, the newly developed affinity covalent immobilization technique of glucoamylase onto ρ-benzoquinone-activated alginate carrier is simple yet effective and could be used for the immobilization of some other enzymes especially amylases.  相似文献   

2.
Aldehydes were efficiently converted to acyloins and benzoins using a new ionic liquid, 3-[2-(1-butyl-1H-imidazol-1,3-ium-3-yl)ethyl]-4,5-dimethyl-1,3-thiazol-3-ium dibromide 1 . This ionic liquid is introduced as a catalyst and a solvent. Acyloins and benzoins were easily isolated from the reaction mixture via simple extraction, and the ionic liquid could be recycled for further use. Also, α-hydroxy ketones with an aromatic and aliphatic substituent were prepared starting from aromatic and aliphatic aldehydes in the presence of ionic liquid 1 .  相似文献   

3.
Amylases are important industrial enzymes that have been applied widely in the food, detergent, and pulp industries and fermentation processes. In the present study, a gene encoding an alpha-amylase from the genomic DNA library of Paenibacillus sp. was identified and characterized. The amylase gene designated amy1 was shown to consist of 1,980 bp and shared sequence identity towards α-amylase genes from other Bacillus sp. The deduced amino acid sequence for Amy1 indicated 80 % sequence identity with other Bacillus strains. Heterologous expression of recombinant Amy1 in Escherichia coli BL21(DE3) facilitated the recovery of this protein in soluble form. Enzyme kinetic data revealed Amy1 to have a K m of 23.83 mg/mL and K cat of 48.74 min?1 and K cat /K m of 2 min?1 mg?1 mL?1 for starch. The activity of this protein was found to be enhanced by Mn2+, and furthermore, Amy1 remained active at a broad pH range (4–10) and temperature (30–90 °C). The ability of Amy1 to act on food waste under broad temperature and pH conditions, together with its ability to produce simple sugars, shows many advantages for further application in the food industry.  相似文献   

4.
5.
The effect of radiation-induced crystallization due to intrinsic -irradiation on the water leaching of basalt-like matrices with immobilized -emitting components of radioactive wastes was studied. Both total leaching and radionuclide (primarily, plutonium) leaching were measured. Although radiation crystallization resulted in some increase in the degree of leaching, this increase lies within the limits permitted for practical use of the test matrices.  相似文献   

6.
A series of novel β-cyclodextrin polymers was synthesized by immobilization of β-cyclodextrin on the chloromethylated crosslinked polystyrene carriers. The synthetic conditions such as reaction time, temperature, molar feeding ratio of reactants, the degree of crosslinking of polystyrene and the catalysts used were studied in detail and the chemical and physical structures of the formed β-CDpolymers were characterized. Results show that the preparation method is simple and the amount of β-CD immobilized is high. As biomedical adsorbents, they were tested for removal of various endogenous and exogenous toxins such as phenols, aromatic amins, barbitals and unconjugated bilirubin. Results indicate that the adsorptión capacity for those toxins can be enhanced by the inclusion interaction among the β-CD, the substrate molecules and the β-CD polymers.  相似文献   

7.
A yeast isolate able to produce high levels of extracellular ??-amylase was selected from a collection of 385 yeasts and identified as Wickerhamia sp. by the sequence of the D1/D2 domain of the 26?S rDNA gene. Part of the nucleotide sequence of the amy1-W gene was cloned, and a sequence of 191 amino acids deduced from this gene was analyzed. The peptide contains three characteristic well-conserved regions in the active sites of ??-amylases (EC 3.2.1.1). The enzyme was purified and in situ activity showed only one band with amylolytic activity. The molecular mass of the ??-amylase was estimated at 54?kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Enzymatic activity on soluble starch as substrate was optimal at pH 5?C6 and 50 °C. This thermostable enzyme was inhibited by EDTA?CNa2 and 1,10-phenanthroline; the activity of the dialyzed enzyme was reactivated with Ca2+ and Mg2+ cations, which indicates that the ??-amylase is a metalloenzyme. ??-Amylase production was induced by starch and maltose and repressed by glucose. The high yield and productivity found in this work makes this Wickerhamia sp. strain a promising candidate for the biotechnological production of ??-amylase.  相似文献   

8.
The filamentous fungi from the Huanghai sea sludge were screened according to their ability to produce cold-active α-amylase. The strain with the highest amylase activity was identified as Penicilllum species. The α-amylase purified by ammonium sulphate precipitation and column chromatography on DEAE-sepharose and sephadex G-100 shows a molecular weight of about 55000 and a pl of 4. 38. The enzyme is stable in a pH range of 5.5—8.0 and has a maximum activity at pH 6.0. Compared with the α-amylase from mesophiles and thermophiles, the cold-active enzyme shows a high enzyme activity at lower temperatures and a high sensitivity at temperatures higher than 50℃. The optimal temperature is 40℃ and the activity decreases dramatically at temperatures above 50℃. Ca^2 shows a significant effect on maintaining the structure and the activity of the enzyme. EDTA and Cu^2 are its inhibitors. The products from the hydrolysis of soluble starch with the cold-active enzyme are maltose and other oligosaccharides.  相似文献   

9.
The filamentous fungi from the Huanghai sea sludge were screened according to their ability to produce cold-active α-amylase. The strain with the highest amylase activity was identified as Penicillium species. The α-amylase purified by ammonium sulphate precipitation and column chromatography on DEAE-sepharose and sephadex G-100 shows a molecular weight of about 55000 and a pI of 4.38. The enzyme is stable in a pH range of 5.5-8.0 and has a maximum activity at pH 6.0. Compared with the α-amylase from mesophiles and thermophiles, the cold-active enzyme shows a high enzyme activity at lower temperatures and a high sensitivity at temperatures higher than 50 ℃. The optimal temperature is 40 ℃ and the activity decreases dramatically at temperatures above 50 ℃. Ca2 shows a significant effect on maintaining the structure and the activity of the enzyme. EDTA and Cu2 are its inhibitors. The products from the hydrolysis of soluble starch with the cold-active enzyme are maltose and other oligosaccharides.  相似文献   

10.
The interaction between influenza virus hemagglutinins and host cell with terminal sialic acid linked receptors, SA-α-2,6-Gal for human strains is important to obtain insights into this infectious disease. Sambucus nigra lectin has high affinity for SA-α-2,6-Gal receptors. The goals of this work were: to extract the SA-α-2,6-Gal receptors from porcine airways; to perform receptors immobilization and study their storage stability; and to determine some parameters of interaction between the receptor and S. nigra lectin. The receptor isolation was monitored by means of bound sialic acid (BSAc) detection. A major band of protein at 66.7 kDa was clearly visible in SDS-PAGE assay. Eighty-one percent of isolated glycoproteins were immobilized on magnetic nanoparticles. The kinetics of BSAc storage stability at 4 °C was approximated as the first order reaction with kinetic constant and half-life estimated as 0.062 day?1 and 11.2 days, respectively. The dissociation constant (K d) calculated from Scatchard's plot was 2.47?×?10?7 M, and the receptor concentration was equal to 7.92?×?10?5 M. Procedure for N-SA-α-2,6-Gal -receptors extraction based on their affinity to S. nigra lectin with magnetic nanoparticles, and their immobilization in active form, was not described previously, and may have wide application in designing biosensors or virus removal from areas or contaminated samples.  相似文献   

11.
A novel α-amylase (McAmyA) from the thermophilic fungus, Malbranchea cinnamomea was purified, characterized and crystallized in the present study. McAmyA was purified to apparent homogeneity with a molecular mass of 60.3 kDa on SDS-PAGE. The enzyme exhibited maximal activity at pH 6.5 and was stable within pH 5.0–10.0. It was most active at 65 °C and was stable up to 50 °C. McAmyA was capable of hydrolyzing amylose, starch, amylopectin, pullulan, cyclodextrins and maltooligosaccharides. The full-length cDNA of an α-amylase gene (McAmyA) from the strain was cloned. McAmyA consisted of a 1,476-bp open reading frame encoding 492 amino acids. It displayed the highest amino acid sequence homology (less than 60 %) with the reported α-amylases. The crystal structure of McAmyA was solved at a resolution of 2.25 Å (PDB code 3VM7). The overall structure of McAmyA reveals three domains with ten α helices and 14 β strands, and the putative catalytic residues are positioned at domain A with somewhat different secondary structural circumstances compared with typical α-amylases.  相似文献   

12.
Among matrices used for immobilizing Bacillus acidicola cells [calcium alginate, chitosan + alginate, scotch brite, and polyurethane foam (PUF)], ??-amylase production was highest by PUF-immobilized cells (9.1?U?ml?1), which is higher than free cells (7.2?U?ml?1). The PUF-immobilized cells could be reused over seven cycles with sustained ??-amylase production. When three variables (moisture, starch, and ammonium sulfate), which significantly affected enzyme production in solid-state fermentation (SSF), were optimized using response surface methodology, 5.6-fold enhancement in enzyme production was attained. The enzyme production in SSF is 3.8-fold higher than that in submerged fermentation. The bread made by supplementing dough with ??-amylase of B. acidicola scored better than those with the xylanase of Bacillus halodurans and thermostable ??-amylase of Geobacillus thermoleovorans.  相似文献   

13.
α-Amylase from Bacillus mojavensis A21 (BMA.2) was purified to homogeneity by ultrafiltration, Sephadex G-75 gel filtration and Sepharose mono Q anion exchange chromatography, with a 15.3-fold increase in specific activity and 11% recovery. The molecular weight of the BMA.2 enzyme was estimated to be 58 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and gel filtration. The optimum temperature and pH were 80?°C and 6.5, respectively. BMA.2 belonged to the EDTA-sensitive α-amylase, but its activity was not stimulated by the presence of Ca2+ ions. The major end-products of starch hydrolysis were maltohexaose, maltopentaose and maltotriose. The N-terminal amino acid sequence of the first ten amino acids of the purified α-amylase was ASVNGTLMQY. Compared to sequences of other amylases, the ten amino acid sequence contains Val at position 3, while amylases from Bacillus licheniformis NH1 and Bacillus sp. SG-1 have Leu and Thr at position 3, respectively.  相似文献   

14.
A hydrophilic immobilized enzyme reactor (IMER) containing trypsin was prepared and applied in the proteolysis of glycoproteins. Glycoproteins including horseradish peroxidase, asialofetuin, and fetuin were used to evaluate the performance of the hydrophilic IMER for the glycoprotein digestion. The digested products were detected by matrix-assisted laser desorption/ionization quadruple ion trap time-of-flight mass spectrometry and micro-high-performance liquid chromatography. The hydrophilic IMER showed higher enzymatic digestion efficiency compared with conventional in-solution digestion. The digestion time could be reduced from 16 h to several minutes. Furthermore, using microwaves as a heat source, the reproducibility of the hydrophilic IMER was evaluated and this IMER could be recycled for at least ten times without obvious loss of enzyme activity. The hydrophilic IMER provides a promising tool for high-throughput glycoproteome analysis.  相似文献   

15.
The gene encoding a thermostable β-d-xylosidase (GbtXyl43B) from Geobacillus thermoleovorans IT-08 was cloned in pET30a and expressed in Escherichia coli; additionally, characterization and kinetic analysis of GbtXyl43B were carried out. The gene product was purified to apparent homogeneity showing M r of 72 by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme exhibited an optimum temperature and pH of 60 °C and 6.0, respectively. In terms of stability, GbtXyl43B was stable at 60 °C at pH 6.0 for 1 h as well as at pH 6–8 at 4 °C for 24 h. The enzyme had a catalytic efficiency (k cat/K M) of 0.0048?±?0.0010 s?1 mM?1 on p-nitrophenyl-β-d-xylopyranoside substrate. Thin layer chromatography product analysis indicated that GbtXyl43B was exoglycosidase cleaving single xylose units from the nonreducing end of xylan. The activity of GbtXyl43B on insoluble xylan was eightfold higher than on soluble xylan. Bioinformatics analysis showed that GbtXyl43B belonging to glycoside hydrolase family 43 contained carbohydrate-binding module (CBM; residues 15 to 149 forming eight antiparallel β-strands) and catalytic module (residues 157 to 604 forming five-bladed β-propeller fold with predicted catalytic residues to be Asp287 and Glu476). CBM of GbtXyl43B dominated by the Phe residues which grip the carbohydrate is proposed as a novel CBM36 subfamily.  相似文献   

16.
The enzyme from halophilic microorganisms often has unique properties such as organic-solvent-tolerance. In this study, a novel organic-solvent-tolerant α-amylase gene was cloned from the mild halophile Exiguobacterium sp. DAU5. The open reading frame (ORF) of the enzyme consisted of 1,545 bp and encoded 514 amino acids, the primary sequence revealed that it belongs to the glycoside hydrolase (GH) family 13. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed an AmyH monomer of 57 kDa. The enzyme exhibited maximal activity at 40 °C in pH?8.5 glycine–NaOH buffer, and the activity was strongly inhibited by Zn2+, Cu2+, and Fe2+. The α-amylase AmyH exhibited high hydrolysis activity toward soluble starch, and the major hydrolysis products were maltose, maltotriose, and maltopentaose; the AmyH could not efficiently hydrolyze oligosaccharides smaller than maltoheptaose, nor could it act on the β-1,4 or α-1,6 glucosidic bonds in xylan or pullulan, respectively. In addition, the α-amylase exhibited better tolerance to organic solvents, as it was stable in the presence of dimethylsulfoxide (DMSO), methanol, ethanol, and acetone. Base on all of these results, the enzyme could be useful for practical application in the bakery industry and in biotechnological processes that occur in the presence of organic solvents.  相似文献   

17.
18.
The negatively charged (at pH 8.2) glucose oxidase (GOx, pI ca. 4.2) was assembled onto the surface of single-walled carbon nanotubes (SWNT), which was covered (or wrapped) by a layer of positively charged polyelectrolyte poly(dimethyldiallylammonium chloride) (PDDA), via the electrostatic interaction forming GOx-PDDASWNT nanocomposites. Fourier transform infrared (FTIR), UV-Vis and electrochemical impedance spectroscopy (EIS) were used to characterize the growth processes of the nanocomposites. The results indicated that GOx retained its native secondary conformational structure after it was immobilized on the surface of PDDA-SWNT. A biosensor (Nafion-GOx-PDDA-SWNT/GC) was developed by immobilization of GOx-PDDA-SWNT nanocomposites on the surface of glassy carbon (GC) electrode using Nafion (5%) as a binder. The biosensor showed the electrocatalytic activity toward the oxidation of glucose under the presence of ferrocene monocarboxylic acid (FcM) as an electroactive mediator with a good stability, reproducibility and higher biological affinity. Under an optimal condition, the biosensor could be used to detection of glucose, presenting a typical characteristic of Michaelis-Menten kinetics with the apparent Michaelis-Menten constant of KM^app ca. 4.5 mmol/L, with a linear range of the concentration of glucose from 0.5 to 5.5 mmol/L (with correlation coefficient of 0.999) and the detection limit of ca. 83 μmol/L (at a signal-to-noise ratio of 3). Thus the biosensor was useful in sensing the glucose concentration in serum since the normal glucose concentration in blood serum was around 4.6 mmol/L. The facile procedure of immobilizing GOx used in present work would promote the developments of electrochemical research for enzymes (proteins), biosensors, biofuel cells and other bioelectrochemical devices.  相似文献   

19.
20.
Abstract

A proline-based aminophosphinic acid ligand and it's vanadium complex have been synthesized and characterized by spectroscopic techniques. The inhibitory activity on pancreatic α-amylase and Baker's yeast α-glucosidase has been examined in vitro. The novel complex showed more inhibitory potency against pancreatic α-amylase and Baker's yeast α-glucosidase compared to acarbose as an antidiabetic drug.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号