首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we further investigate our recently devised method for folding polymer chains into nanoparticles using intramolecular, supramolecular interactions. Specifically, we show a direct relationship between molecular weight of the parent chain and size of the folded nanoparticle. This is investigated both analytically via the separation and subsequent characterization of a polydisperse nanoparticle sample into high and low molecular weight fractions, and by examining a family of poly(norbornenes) deliberately prepared with varying molecular weights. With these polymer nanoparticles in hand their assembly on surfaces is studied where larger structures are formed as a result of the interplay between the movement of the nanoparticles on the surface and the evaporation of solvent. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

2.
The equilibrium dispersion of nanoparticles with grafted polymer chains into polymer matrices, of the same chemical structure as the brush, is studied through the device of mean‐field theory. Our results show that the disperion of brush‐coated nanoparticles into a matrix polymer is improved with (i) decreasing particle radius and (ii) increasing brush chain length. Both of these aspects can be understood based on the fact that, unlike the case of planar surfaces, homopolymer chains end‐grafted to spherical nanoparticle surfaces tangentially spread away from the surface thus alleviating the packing frustration that is created by the relatively high grafting densities. This permits significant brush/matrix overlap, even at high grafting densities, a regime that has only recently become experimentally available due to advances in polymer synthesis (i.e., the “grafting‐to” methods). © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 351–358, 2008  相似文献   

3.
This article presents effects of polydispersity in polymers grafted on spherical surfaces on grafted polymer chain conformations, grafted layer thickness, and free‐end monomer distribution within the grafted layer. At brush‐like grafting densities, as polydispersity index (PDI) increases, the scaling exponent of radius of gyration of grafted chains approaches that of a single chain grafted on the same nanoparticle, because polydispersity alleviates monomer crowding within the brush. At high PDI, the chains shorter than the number average chain length, Nn, have more compressed conformations, and the chains longer than Nn overall stretch less than in the monodisperse case. As seen in polydisperse flat brushes at high grafting densities, the grafted layer thickness on spherical nanoparticle increases with PDI. Polydispersity eliminates the region near the surface devoid of free‐end monomers seen in monodisperse cases, and it reduces the width of free‐end monomer distribution and shifts the free‐end monomer distribution close to the surface. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

4.
We present an X‐ray photon correlation spectroscopy (XPCS) study of dynamic transitions in an anisotropic colloid‐polymer dispersion with multiple arrested states. The results provide insight into the mechanism for formation of repulsive glasses, attractive glasses, and networked gels of colloids with weakly adsorbing polymer chains. In the presence of adsorbing polymer chains, we observe three distinct regimes: a state with slow dynamics consisting of finite particles and clusters, for which interparticle interactions are predominantly repulsive; a second dynamic regime occurring above the saturation concentration of added polymer, in which small clusters of nanoparticles form via a short‐range depletion attraction; and a third regime above the overlap concentration in which dynamics of clusters are independent of polymer chain length. The observed complex dynamic state diagram is primarily governed by the structural reorganization of a nanoparticle cluster and polymer chains at the nanoparticle‐polymer surface and in the concentrated medium, which in turn controls the dynamics of the dispersion. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 752–760  相似文献   

5.
We perform multiscale simulations based on the coupling of molecular dynamics and lattice‐Boltzmann (LB) method to study the electrohydrodynamics of a polyampholyte‐grafted spherical nanoparticle. The long‐range hydrodynamic interactions are modeled by coupling the movement of particles to a LB fluid. Our results indicate that the net‐neutral soft particle moves with a nonzero mobility under applied electric fields. We systematically explore the effects of different parameters, including the chain length, grafting density, electric field, and charge sequence, on the structures of the polymer layer and the electrophoretic mobility of the soft particle. It shows that the mobility of nanoparticles has remarkable dependence on these parameters. We find that the deformation of the polyampholyte chains and the ion distribution play dominant roles in modulating the electrokinetic behavior of the polyampholyte‐grafted particle. The enhancement or reduction in the accumulation of counterions around monomers can be attributed to the polymer layer structure and the conformational transition of the chains in the electric field. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1435–1447  相似文献   

6.
For weak polyelectrolytes, the interplay between pH, solvent properties, and polymer structure affects the amount of charges, their distribution, and hence their conformations via Coloumb repulsion. Attractive interactions can also develop between charged and neutral sites counteracting the expected Coulomb‐induced expansion. To gauge how such competition affects polyelectrolyte structure and ionization, the titration of a single polyelectrolyte chain, isolated or close to a charged sphere, mimicked with a novel many‐body potential model is simulated with Monte Carlo. Apart from showing a 10‐fold higher ionization than isolated monomers at low pH, interacting species contracted forming short‐range clusters of charged and neutral ionizable groups. The presence of a charged sphere synergically boosted both effects due to monomer interactions, forcing the chains to condense onto its surface at much lower pH. Structural properties, however, seem to be controlled only by the ionization degree despite the presence of the topological restraint represented by the spherical surface. Using Monte Carlo titration results, the equilibrium ionization of isolated chains is also estimated; the results evidence that even weak interactions can easily lead to a doubling of the total charge. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 650–663  相似文献   

7.
The current investigation describes in detail the influence of the polymer molar mass as well as polymer‐solvent interactions on the formation of nanoparticles using the nanoprecipitation methodology. For this purpose, a homologous series of poly(methyl methacrylate)s with molar masses ranging from 7,700 to 274,000 g mol?1 was prepared. Subsequently nanoprecipitation was performed in an automated and systematic manner using liquid handling robots and a variation of different initial concentrations of the polymers and solvent/nonsolvent ratios. To elucidate information about the polymer behavior in the solvents used for the nanoprecipitation procedure (acetone, tetrahydrofuran), intrinsic viscosity measurements were performed. The nanoparticle formulations were examined in terms of particle size and size distribution, particle shape as well as zeta‐potential. The conditions for the preparation of stable and uniform nanoparticles, regardless of molar mass and hydrodynamic volume of the initial polymer, were determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

8.
It is now well established that controlling the grafted chain lengths and densities on nanoparticle surfaces determines the effective interactions between particles, and their assembly. Here, we present unusual kinetic results for achieving grafted chain lengths longer than the free chains using reversible addition‐fragmentation chain transfer (RAFT) polymerization and discuss the limitations to obtaining polymer grafting density higher than ~0.06 chains/nm2. We observe that surface initiated polymerization grows faster than the free chains in solution with high RAFT agent coverage (1.95 agents/nm2) on nanoparticles. The time‐dependence of graft density suggests that activation of the anchored chain transfer agent (CTA) is limited by the diffusion of macro‐radicals within growing grafts. Thus, radical transfer and exchange reactions become inefficient between grafts and free polymer, and convert the surface‐initiated RAFT mechanism to a free radical polymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1700–1705  相似文献   

9.
A series of poly(2‐methoxyethyl vinyl ether)s with narrow molecular weight distributions and with perfectly defined end groups of varying hydrophobicities was successfully synthesized by base‐assisting living cationic polymerization. The end group was shown to greatly affect the temperature‐induced phase separation behavior of aqueous solutions (lower critical solution temperature‐type phase separation) or organic solutions (upper critical solution temperature‐type phase separation) of the polymers. The cloud points were also influenced largely by the molecular weight and concentration of the polymer. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
Tethering oligopeptides through one end densely packed onto a linear polymer main chain will greatly reduce freedom of the peptide chains, which affords an easy access to investigate the secondary structure of peptides under constrained condition. Herein, molecular brushes with densely grafted monodispersed Cbz‐protected oligolysine were efficiently synthesized via free radical polymerization of the macromonomer‐bearing lysine octamer, and the secondary structures of the oligopeptide side chains in solutions were investigated. To examine the architecture effects on helical conformation, circular dichroism spectra from the polymer were compared with that from the corresponding macromonomer. To check the chemical structural effects on conformation of the oligopeptide, Cbz groups from the molecular brushes were deprotected, and the secondary structures of the polymers were compared before and after the deprotection. Conformation of the deprotected polymer was further explored by varying solution pH values. Complexation of the positively charged, deprotected polymer with anionic surfactant provides an alternative route to mediate the secondary structures of the short peptides in the constrained environment. It has been found that oligolysine side chains within the molecular brushes can adopt enhanced α‐helical conformation through the crowding structures or can form β‐sheet by hydrophobic interactions between the complexed surfactants. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Coarse‐grained molecular dynamics simulations are used to investigate the adsorption behavior of monodisperse and bidisperse polymer chains on the nanoparticle (NP) surface at various polymer–NP interactions, chain lengths, and stiffness. At a strong polymer–NP interaction, long chains preferentially occupy interfacial region and squeeze short chains out of the interfacial region. Semiflexible chains with proper stiffness wrap NPs dominantly in a helical fashion, whereas fully flexible chains constitute the surrounding matrix. As chain stiffness increases, the results of the preferential adsorption are the opposite. The chain‐length or chain‐stiffness‐induced selective adsorption behavior of polymer chains in the polymer–NP interfacial region relies on a delicate competition between entropic and enthalpic contributions to the total free energy. These results could provide insights into polymer–NP interfacial adsorption behavior and guide the design of high‐performance nanocomposites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1829–1837  相似文献   

12.
Biological systems feature controlled assembly of well‐defined building blocks at different length scales. While major progress has been achieved in directing the assembly of synthetic molecular building blocks, controlled organization of nanostructured units into micro‐ and macroscale aggregates remains a challenge. Herein, we report the synthesis of well‐defined nanostructured building blocks, cylindrical polymeric nanoparticles with controlled dimensions and inner surface chemistry, and their dynamic anisotropic organization into one‐dimensional assemblies. Nanoparticle building blocks were produced by molecular templating of cylindrical bottlebrush copolymers featuring tricomponent side chains. The produced nanostructures were composed of a nonionic and bioinert polyethylene glycol (PEG) shell and stimuli‐responsive poly(methacrylic acid) (PMA) chains grafted on the interior. We show that pH‐dependent interactions between PMA chains exposed only at the nanoparticle ends lead to anisotropic end‐to‐end association of parent cylindrical nanostructures into elongated superstructures. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3868–3874  相似文献   

13.
The preparation of carboxylic acid‐coated silica nanoparticles was investigated. A monolayer of carboxylic acid residues with controllable graft density was anchored to the nanoparticle by a ring‐opening reaction with succinic anhydride. Poly(methacrylic acid) [poly(MAA)] grafted nanoparticles were prepared via a polymerization–deprotection strategy. Tert‐butyl methacrylate was polymerized from the surface of silica nanoparticles in a predictable manner and with excellent control over the molecular weight distribution. Subsequent removal of the tert‐butyl group resulted in poly (MAA) grafted nanoparticles. The polymer nanoparticles were also functionalized with dyes, which may be useful in tracking the particles in biological systems. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Nanoparticles can influence the properties of polymer materials by a variety of mechanisms. With fullerene, carbon nanotube, and clay or graphene sheet nanocomposites in mind, we investigate how particle shape influences the melt shear viscosity η and the tensile strength τ, which we determine via molecular dynamics simulations. Our simulations of compact (icosahedral), tube or rod‐like, and sheet‐like model nanoparticles, all at a volume fraction ? ≈ 0.05, indicate an order of magnitude increase in the viscosity η relative to the pure melt. This finding evidently can not be explained by continuum hydrodynamics and we provide evidence that the η increase in our model nanocomposites has its origin in chain bridging between the nanoparticles. We find that this increase is the largest for the rod‐like nanoparticles and least for the sheet‐like nanoparticles. Curiously, the enhancements of η and τ exhibit opposite trends with increasing chain length N and with particle shape anisotropy. Evidently, the concept of bridging chains alone cannot account for the increase in τ and we suggest that the deformability or flexibility of the sheet nanoparticles contributes to nanocomposite strength and toughness by reducing the relative value of the Poisson ratio of the composite. The molecular dynamics simulations in the present work focus on the reference case where the modification of the melt structure associated with glass‐formation and entanglement interactions should not be an issue. Since many applications require good particle dispersion, we also focus on the case where the polymer‐particle interactions favor nanoparticle dispersion. Our simulations point to a substantial contribution of nanoparticle shape to both mechanical and processing properties of polymer nanocomposites. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1882–1897, 2007  相似文献   

15.
Polymer nanocomposites are distinguished by the convergence of length scales corresponding to the radius of gyration of the polymer chains, a dimension of the nanoparticle and the mean distance between the nanoparticles. The consequences of this convergence on the physics of the polymer chains are considered, and some of the outstanding issues and their potential consequences on structure—property relations for polymer nanocomposites are highlighted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3252–3256, 2007  相似文献   

16.
We present a density-functional theory study of nanoparticle interactions in a concentrated polymer solution. The polymers are modeled as freely jointed tangent chains; all nonbonded interactions between polymer segments and nanoparticles are described by Lennard-Jones potentials. We test several recently proposed methods of treating attractive interactions within the density-functional theory framework by comparing theoretical results with recent simulation data. We find that the simple van der Waals approach provides the most accurate results for the polymer-mediated potential of mean force between two dilute nanoparticles. We employ this approach to study nanoparticle interactions as a function of nanoparticle-segment interaction strength and polymer solution density and temperature.  相似文献   

17.
Organic/inorganic nanocomposites were synthesized from poly(methylmethacrylate) (PMMA) and properly modified silica nanoparticles by in situ polymerization. Methacryloylpropyltrimethoxysilane was selected as nanoparticle surface modifier because it is characterized by unsaturated end groups available to radical reactions, making possible to suppose their participation in the acrylic monomer polymerization. As a result of the above hypothesized reactions, a phase constituted by polyacrylic chains grafted onto modified silica surface was isolated. 29Si and 13C solid‐state nuclear magnetic resonance experiments permitted to analyze this phase in terms of composition and chain mobility as well as to highlight interaction mechanisms occurring between growing PMMA oligoradicals and functional groups onto silica surface. It was demonstrated that this PMMA grafted onto silica surface acts as an effective coupling agent and assures a good dispersion of nanoparticles as well as a strong nanoparticle/matrix interfacial adhesion. As a result of strong interactions occurring between phases, a significant increase of the glass transition temperature was recorded. Finally, the abrasion resistance of PMMA in the hybrids was significantly improved as a result of a different abrasion propagation mechanism induced by silica particles thus overcoming one of the most serious PMMA drawback. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A poly(p‐phenylenevinylene) derivative bearing conjugated side chains (polyCPV) was synthesized by Migita‐Kosugi‐Stille type coupling polycondensation reaction. This polymer contains phenylenevinylene units in both the main chain and the side chains. UV–vis absorption and fluorescence emission spectroscopies revealed a well‐developed π‐conjugation of the polyCPV. The absorption band of the polymer was extended to long wavelengths. A fluorescent emission maximum of polyCPV is located at considerably longer wavelengths than that of the conjugated side chain monomer. Electron spin resonance measurements of polyCPV confirmed generation of charge species in both the main chain and the side chains via iodine doping. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
The confinement effects introduced by nanoparticles have been reported to influence the phase behaviors thus the properties of polymer nanocomposites. In this study, molecular dynamics and crystallization behaviors of polyethylene (PE) composited with three types of silica (SiO2) nanoparticles, namely unmodified SiO2, hydrophobically modified SiO2, SiO2‐APTES (3‐aminopropyltriethoxysilane) and SiO2‐PTES (n‐propyltriethoxysilane), were systematically investigated via a combination of DSC, XRD and 1H solid‐state NMR measurements. The suppressions in crystallization and chain mobilities of PE rank in the order of unmodified SiO2 < SiO2‐APTES < SiO2‐PTES due to the increasing interfacial interactions between PE and SiO2 nanoparticles. Additionally, independent of polymer–nanoparticle interactions, a silica network forms for all three kinds of nanocomposites when SiO2 content reaches 83 wt %. The mobilities of polymer chains are severely restricted by such a percolated network structure, leading to a turning point in the crystallization ability of nanocomposites and a new crystallization peak at 45 °C lower than that of pure PE. The synergetic effects of interfacial interactions and filler network on polymer crystallization have been thoroughly studied in this work, which will provide guidance on modifying and designing nanocomposites with controlled properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 498–505  相似文献   

20.
Water‐soluble crosslinked hollow nanoparticles were prepared using pH‐responsive anionic polymer micelles as templates. The template micelles were formed from pH‐responsive diblock copolymers (PAMPS‐PAaH) composed of the poly(sodium 2‐(acrylamido)‐2‐methylpropanesulfonate) and poly(6‐(acrylamido)hexanoic acid) blocks in an aqueous acidic solution. The PAMPS and PAaH blocks form a hydrophilic anionic shell and hydrophobic core of the core‐shell polymer micelle, respectively. A cationic diblock copolymer (PEG‐P(APTAC/CEA)) with the poly(ethylene glycol) block and random copolymer block composed of poly((3‐acrylamidopropyl)trimethylammonium chloride) containing a small amount of the 2‐(cinnamoyl)ethylacrylate photo‐crosslinkable unit can be adsorbed to the anionic shell of the template micelle due to electrostatic interaction, which form a core‐shell‐corona three‐layered micelle. The shell of the core‐shell‐corona micelle is formed from a polyion complex with anionic PAMPS and cationic P(APTAC/CEA) chains. The P(APTAC/CEA) chains in the shell of the core‐shell‐corona micelle can be photo‐crosslinked with UV irradiation. The template micelle can be dissociated using NaOH, because the PAaH blocks are ionized. Furthermore, electrostatic interactions between PAMPS and PAPTAC in the shell are screened by adding excess NaCl in water. The template micelles can be completely removed by dialysis against water containing NaOH and NaCl to prepare the crosslinked hollow nanoparticles. Transmission electron microscopy observations confirmed the hollow structure. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号