首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The structure of H‐complexes of dimethylformamide (DMF) with N‐(2,2,2‐trichloro‐1‐hydroxyethyl)‐p‐toluenesulfonamide (1), N‐[1‐(4‐chlorophenylsulfonylamino)‐2,2,2‐trichloro)ethyl]dithiooxamide (2), N,N'‐bis[2,2‐dichloro‐1‐(4‐chlorophenylsulfonylamino)‐2‐phenylethyl]ethanebis(thioamide) (3) and N,N'‐bis[2,2,2‐trichloro‐1‐(phenylsulfonylamino)ethyl]ethanebis(thioamide) (3a) as proton donors was investigated using Fourier transform infrared spectroscopy and Density Functional Theory calculations. According to calculations, the interaction of DMF with the sulfonamide and thioamide NH groups in the complexes strongly affects the intramolecular H‐bonding in 1–3. From the natural bond orbital analysis, complexation with DMF strongly decreases the energy of the intramolecular N?H · · · S = C bonds, up to their rupture. Variation of the strength of the intra‐ and intermolecular H‐bonds in the complexes is consistent with the calculated frequencies of the NH and OH stretching vibrations, and the analysis of the corresponding bands in the IR spectra allows to suggest the preferable structure of the formed H‐complexes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
利用分子轨道从头算理论和密度泛函理论结合不同理论基组对于N-H…O蓝移氢键进行了详细的研究.利用标准方法和均衡校正方法对二聚体进行了几何优化,振动频率和相互作用能的计算.拓扑学和自然键轨道理论对于蓝移氢键的本质进行分析.自然键轨道(NBO)分析表明,σ*(N-H)轨道上电子密度降低是电子密度重排效应的结果.分子内电子重排、轨道再杂化和电子受体内部结构重组共同作用结果导致了N-H的振动频率大幅蓝移现象的出现.  相似文献   

3.
The Fourier transform Raman and Fourier transform infrared spectra for minoxidil have been recorded in the region 4000—100 cm?1 and 4000—450 cm?1, respectively. The structural and spectroscopy data of the molecule in the ground state were calculated by using density functional theory methods with 6-311G (d, p) basis set. A detailed vibrational analysis of the title compound has been done using normal coordinate analysis following the scaled quantum mechanical force field methodology. The calculated molecular geometry parameters and scaled vibrational wavenumbers are well compared with the experimental data. The electronic properties, such as excitation energies, absorption wavelength, highest occupied molecular orbital (HOMO), and lowest unoccupied molecular orbital (LUMO) energies were performed by time-dependent density functional theory approach, and the results are in good agreement with experimental absorption spectrum. The charge delocalizations of these molecules have been analyzed using natural bond orbital analysis. The molecule orbital contributions are studied by density of energy states. Fukui functions, local softness, and electrophilicity indices for selected atomic sites of the title compound are determined. Finally, the thermal behaviors of the compound have been calculated by different temperature.  相似文献   

4.
The effect of the electron–acceptor substituent CF3SO2 at the imine nitrogen atom on the basicity and the electron distribution in N,N‐alkylformamidines ( 1 , 2 , 3 , 4 , 5 ) was studied experimentally by the FTIR spectroscopy and theoretically at the DFT (B3LYP/6‐311+G(d,p)) level of theory, including the natural bond orbital (NBO) analysis. The calculated proton affinities of the imine nitrogen atom and the sulfonyl oxygen (PAN′ and PAO) depend on the atomic charges, the C?N′ and N′―S bond polarity and on the energy of interaction of the amine nitrogen and the oxygen lone pairs with antibonding π* and σ*‐orbitals. The basicity of the imine nitrogen atom is increased with the increase of the electron‐donating power of the substituent at the amine nitrogen atom due to stronger interaction nN → π*C?N′, but is decreased for the electron‐withdrawing groups MeSO2 and CF3SO2 at the imine nitrogen atom in spite of the increase of this conjugation. Protonation of ( 1 , 2 , 3 , 4 , 5 ) in CH2Cl2 solution in the presence of CF3SO3H occurs at the imine nitrogen atom, while the formation of hydrogen bonds with 4‐fluorophenol takes place at the sulfonyl oxygen atom, whose basicity is lower than that of N,N′‐dimethylmethanesulfonamide but higher than of N,N′‐dimethyltrifluoromethanesulfonamide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
《光谱学快报》2012,45(9):492-509
Abstract

A hetero aromatic nonlinear optical crystal, 2-amino-5-nitropyridinium sulfamate was synthesized by slow evaporation method. An optimized molecular structure and theoretical vibrational spectra were obtained and analyzed by use of density functional theory. The observed vibrational wavenumbers in the experimental spectra were compared with the calculated results. Scaled quantum mechanical force field methodology with normal coordinate analysis was used for the assignment of experimental infrared and Raman spectra. The second harmonic generation and photoluminescence properties of the crystal were studied. The charge transfer interaction between the donor acceptor moieties were obtained by means of natural bond orbital analysis.  相似文献   

6.
The remarkable differences between the infrared spectra of oxygen adsorption and nitrogen desorption in coal have been experimentally and theoretically investigated. Density functional theory calculations were performed to better explain the mechanism of oxygen adsorption using six different molecular models of coal. In addition, the remarkable differences of infrared spectra between oxygen adsorption and nitrogen desorption was defined as the index V, which was used to classify the spontaneous combustion tendency of coal. The experimental data indicated that the spectra in the 4000–2000 cm?1 and 1250–1050 cm?1 regions exhibited significant changes. These results suggest that the mechanism of oxygen adsorption is the alteration and transfer of charge density around the activated sites, which leads to the observed changes of the infrared spectra. The V, which is related to the alteration of spectral intensity, is found to decrease with the increase of adiabatic oxidation time and the relative spontaneous combustion period of coal. This observation solidifies the connection between sample spectral intensity and oxygen chemisorption. These data suggest that the hydroxy in hydroxy and carboxyl groups on the surface of coal particles is the site of oxygen chemisorption, and the V can be used to rapidly and accurately categorize the spontaneous combustion tendency of coal.  相似文献   

7.
纳米晶硅薄膜中氢含量及键合模式的红外分析   总被引:6,自引:0,他引:6       下载免费PDF全文
采用传统射频等离子体化学气相沉积技术在100—350℃的衬底温度下高速沉积氢化硅薄膜. 傅里叶变换红外光谱和Raman谱的研究表明,纳米晶硅薄膜中的氢含量和硅氢键合模式与薄膜的晶化特性有密切关系,当薄膜从非晶相向晶相转变时,氢的含量减少了一半以上,硅氢键合模式以SiH2为主. 随着衬底温度的升高和晶化率的增加,纳米晶硅薄膜中氢的含量以及其结构因子逐渐减少. 关键词: 氢化纳米晶硅薄膜 红外透射谱 氢含量 硅氢键合模式  相似文献   

8.
本文利用傅里叶变换红外(FT-IR)、拉曼(Raman)和太赫兹(THz)光谱技术在室温下对3,4,5-三羟基苯甲酸(3,4,5-THBA)的无水和水合晶型进行了表征。运用密度泛函理论(DFT)的B3LYP方法分别对两种晶型进行了分子结构优化和频率模拟计算,并根据实验数据对其分子振动模式进行归属,发现3,4,5-THBA两晶型的分子振动模式有着显著不同。研究结果表明,结晶水分子与3,4,5-THBA分子之间的相互作用使得水合与无水晶型的空间构型不同。这一研究结果为利用光谱技术辨别药物晶型和进一步分析研究分子内和分子间相互作用提供了实验及理论依据。  相似文献   

9.
The nonlinear optical (NLO) semiorganic crystals barium thiourea chloride (BTC), bis(thiourea)barium chloride (BTBC) and barium(tetrakisthiourea) chloride (BTTC) were grown by the slow evaporation technique. FT‐Raman and IR spectra of the crystallized NLO materials were recorded and analyzed. The equilibrium geometry, bonding features and harmonic vibrational wavenumbers were investigated with the help of B3LYP density functional theory (DFT) method. From the optimized geometry, the decrease in C N bond length indicates the charge delocalization over the region of the molecules. Lengthening of CS bond and the deviation of CS···Cl angles clearly show the coplanarity of the amide planes of the complexes. The lowering of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap appears to be the cause for its enhanced charge transfer interactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
设计O-羟丙基-N-烷基壳聚糖合成路线,采用密度泛函理论的B3LYP/6-311+G(d,p)方法,对相关物种进行分子结构优化,所得构型均为稳定构型.对各阶段反应物分子的NBO电荷分布、键级进行模拟计算,讨论了分子的反应活性和反应位点.对各阶段反应物分子的前线轨道(FMO)进行模拟计算,分析计算结果,预测了实际反应可能发生的位点.本文研究结果为两亲性壳聚糖改性提供了一定的理论参考价值.  相似文献   

11.
A complete vibrational assignment of phenanthridine C13NH9 has been presented. The infrared (IR) and the Raman spectra of the molecule are analyzed with the help of theoretical prediction of the normal vibrational wavenumbers estimated from normal coordinate analysis (NCA) and density functional theory (DFT) calculations. A general valence force field (GVFF) including 31 parameters (13 diagonal and 18 off‐diagonal) reproduces satisfactorily the in‐plane vibrational signatures of the aforesaid molecule and as well as those for the other related hydrocarbons [phenanthrene and benzo(c)cinnoline]. The bivariate and multivariate data analysis reveals that calculated wavenumbers using GVFF are more accurate than the DFT result. However, DFT yields the relative Raman intensities, which are in good agreement with the experimental ones. The decomposition of the normal mode frequencies into those related to different internal coordinates is also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Four L ‐valine (L ‐Val) phosphonate dipeptides that are potent inhibitors of zinc metalloproteases, namely, L ‐Val‐C(Me)2‐PO3H2 (V1), L ‐Val‐CH(iP)‐PO3H2 (V2), L ‐Val‐CH(iB)‐PO3H2 (V3), and L ‐Val‐C(Me)(iP)‐PO3H2 (V4), are studied by Fourier‐transform infrared (FT‐IR) spectroscopy, Fourier‐transform Raman spectroscopy (FT‐RS), and surface‐enhanced Raman scattering (SERS). The band assignment (wavenumbers and intensities) is made based on (B3LYP/6‐311 + + G**) calculations. Comparison of theoretical FT‐IR and FT‐RS spectra with those of SERS allows to obtain information on the orientation of these dipeptides as well as specific‐competitive interactions of their functionalities with the silver substrate. More specifically, V1 and V4 appear to interact with the silver substrate mainly via a  CsgCH3 moiety localized at the  NamideCsg(CH3)P molecular fragment. In addition, the  POH and isopropyl units of V4 assist in the adsorption process of this molecule. In contrast, the  CαNH2 and  PO3H groups of V2 and V3 interact with the silver nanoparticles, whereas their isopropyl and isobutyl fragments seem to be repelled by the silver substrate (except for the  CH2  of V3), similar to the  Cβ(CH3)2 fragment of L ‐Val for all L ‐Val phosphonate dipeptides investigated in this work. The adsorption mechanism of these molecules onto the colloidal silver surface is also affected by amide bond behavior. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
The optimized geometry and structural features of the most prospective electro‐optic crystal 4‐(N,N‐dimethylamino)‐N‐methyl‐4′‐toluene sulfonate (DAST), and the vibrational spectral investigations have been comprehensively described with the near infrared Fourier transform (NIR FT) Raman and Fourier transform infrared (FT‐IR) spectra supported by the density functional theoretical (DFT) computations to elucidate the contribution of vibrational modes to the linear electro‐optic (LEO) effect. Mulliken population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer (ICT), intramolecular hydrogen bonding and hyperconjugative interactions on the geometries. The influence of CT interaction between the phenyl ring and the dimethylamino group of the nonlinear optical (NLO) chromophore on the endocyclic and exocyclic angles, and the electronic effects such as hyperconjugation and back‐donation on the methyl hydrogen atoms have been examined. The concurrent intense activation of Raman and IR activities of the effective conjugation vibrational coordinate, which significantly contributes to the LEO effect resulting from the strong electron–phonon (e/ph) coupling, has been analyzed in detail. The effects of frontier orbitals, highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), transition of electron density (ED) transfer and the influence of planarity in the stilbazolium ring on the first hyperpolarizability are also discussed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The gaseous standard molar enthalpies of formation of two 2‐R‐3‐methylquinoxaline‐1,4‐dioxides (R = benzoyl or tert‐butoxycarbonyl), at T = 298.15 K, were derived using the values for the enthalpies of formation of the compounds in the condensed phase, measured by static bomb combustion calorimetry, and for the enthalpies of sublimation, measured by Knudsen effusion, using a quartz crystal oscillator. The three dimensional structure of 2‐tert‐butoxycarbonyl‐3‐methylquinoxaline‐1,4‐dioxide has been obtained by X‐ray crystallography showing that the two N? O bond lengths in this compound are identical. The experimentally determined geometry in the crystal is similar to that obtained in the gas‐phase after computations performed at the B3LYP/6‐311 + G(2d,2p) level of theory. The experimental and computational results reported allow to extend the discussion about the influence of the molecular structure on the dissociation enthalpy of the N? O bonds for quinoxaline 1,4‐dioxide derivatives. As found previously, similar N? O bond lengths in quinoxaline‐1,4‐dioxide compounds are not linked with N? O bonds having the same strength. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
The electronic origin of the influence of the anomeric effect (negative hyperconjugative interaction, NHI) on the Fermi contact (FC) term of 1 J(C, H) couplings has been studied from a theoretical point of view at the DFT-B3LYP level. The HN=CH2, molecule was chosen as the primary model compound, in which both FC 1 J(C, H) couplings were decomposed into bond contributions with the natural J coupling dissection approach (NJC). Differences between the 1 J (C, H)FC couplings for C——H bonds in synperiplanar and antiperiplanar orientations with respect to the nitrogen non-bonding electron pair closely follow the experimental trend. They are made up chiefly of three NJC contributions: ‘bond’, ‘direct lone pair’ and the ‘carbon-core orbitals’. The NHI influence on these terms was studied by applying the natural bond orbital (NBO) deletion procedure to the charge transfer interaction into the antiperiplanar (C——H) antibond (n(N)→(C——H)?) prior to the NJC dissection calculation. The dielectric solvation effect on both the total FC terms and the respective NJC contributions was estimated by carrying out the calculations using the polarization continuum model. Inhibition of the anomeric effect is evident when the solvent polarity is increased. NHI saturates rapidly with increasing solvent dielectric. Specific solute-solvent interaction effects on 1 J(C, H) couplings were estimated by evaluating molecular complex models of the form CH2=HN…S (S = H2O and DMSO).  相似文献   

16.
This study reports the Raman (FT‐RS) and absorption infrared (FT‐IR) spectra, based on calculated wavenumbers and normal modes of vibrations, of the following compounds: L ‐Ala‐L ‐NH‐CH(Me)‐PO3H2 (alafosfalin, A1), L ‐Ala‐D ‐NH‐CH(Me)‐PO3H2 (A2), L ‐Ala‐L ‐NH‐CH(Et)‐PO3H2 (A3), D ,L ‐Ala‐D,L ‐NH‐CH(Et)‐PO3H2 (A4), L ‐Ala‐D ‐NH‐CH(iPr)‐PO3H2 (A5), L ‐Ala‐D,L ‐NH‐CH(iPr)‐PO3H2 (A6), L ‐Ala‐D,L ‐NH‐CH(tBu)‐PO3H2 (A7), L ‐Ala‐D,L ‐NH‐CH(iBu)‐PO3H2 (A8), L ‐Ala‐D,L ‐NH‐CH(cBu)‐PO3H2 (A9), L ‐Ala‐D,L ‐NH‐CH(nPA)‐PO3H2 (A10), β‐Ala‐D ‐NH‐CH(Me)‐PO3H2 (A11), and D,L ‐Ala‐NH‐C(Me,Me)‐PO3H2 (A12). The equilibrium geometries and vibrational wavenumbers are calculated using density functional theory (DFT) at the B3LYP; 6–31 + + G** level of theory using Gaussian'03, GaussSum 0.8, and GAR2PED software. We briefly compare and analyze the experimental and calculated vibrational wavenumbers in the range of 3600–400 cm−1. In addition, Raman wavenumbers are compared to those from surface‐enhanced Raman scattering (SERS) for the phosphonodipeptides of alanine (Ala) adsorbed on a colloidal silver surface. The geometry of these molecules etched on the silver surface is deduce from the observed changes in both the intensity and breadth of Raman bands in the spectra of the bound vs free species. For example, A7, A8, A1, A3, and A4 appear to adsorb onto the colloidal silver particles mainly through the phosphonate terminus, and for A3 and A4, through the  C‐NH2 and  CONH fragments. The most dominant SERS bands of A5, A6, A9, A10, and A11 are due to the amide bond vibrations, as well as to the vibrations of the  C‐NH2 group (A9 and A10) and the C C group (A6 and A11). The differences recorded for the A5, A6, A9, A10, and A11 and those of A2 and A12 are due to interactions between the amine and methyl groups with the silver surface, and they reflect vibrational characteristic of these groups. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号