首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of sulfonated poly(phthalazinone ether phosphine oxide)s (sPPEPO) were prepared via aromatic nucleophilic substitution polycondensation of 4‐(4‐hydroxyphenyl) phthalazinone (HPPZ) with sulfonated bis(4‐fluorophenyl)phenyl phosphine oxide (sBFPPO) and bis(4‐fluorophenyl)phenyl phosphine oxide (BFPPO) at various ratios. The properties such as molecular weight, ion exchange capacity (IEC), swelling, thermal stability, proton conductivity, and morphology were investigated. sPPEPO with high IEC exhibited high proton conductivity while they still showed low swelling. Typically, sPPEPO with IEC of 1.54 and 1.69 meq/g exhibited high conductivity of 0.091 and 0.19 S/cm, and low swelling ratios of 14.3% and 19.5% at 80 °C, respectively. The low swelling was attributed to the strong intermolecular interaction including the electrostatic force and hydrogen bond. sPPEPO would be promising candidates used as polyelectrolyte membranes for fuel cells. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1758–1769, 2008  相似文献   

2.
In this work, sulfonic acid functionalized hollow silica spheres (SAFHSS)/Nafion® composite membranes were prepared by a recasting procedure. The influences of temperature on water uptake, swelling degree, and proton conductivity of the composite membranes were studied. In comparison with the pure recast Nafion® membrane, it was found that water uptake of composite membranes increased with increasing SAFHSS loading at all temperature studied. The swelling degree of SAFHSS/Nafion® composite membranes with 10~15 wt % SAFHSS loading was lower than that of the pure recast Nafion® at all temperatures in the study. The proton conductivity of SAFHSS/Nafion® composite membranes was constantly higher than that of the pure recast Nafion® at all temperatures (50~130 °C). In a range from 50 to 130 °C, the highest conductivity of composite membranes was obtained when 10 wt % SAFHSS was loaded. The maximum conductivity reached 0.1 S cm?1 at 100% relative humidity and 100 °C, even the temperature reached to 130 °C, the conductivity of the composite membranes with 10 wt % SAFHSS was still as high as 4.4 × 10?2 S cm?1 at 100% relative humidity, whereas the conductivity of the pure recast Nafion® was only 2.2 × 10?3 S cm?1. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2647–2655, 2009  相似文献   

3.
A series of soluble, benzimidazole‐based polymers containing sulfonic acid groups (SuPBI) has been synthesized. SuPBI membranes resist extensive swelling in water but are poor proton conductors. When blended with high ion exchange capacity (IEC) sulfonated poly(ether ether ketone) (SPEEK), a polymer that has high proton conductivity but poor mechanical integrity, ionic crosslinks form reducing the extent of swelling. The effect of sulfonation of PBI on crosslinking in these blends was gauged through comparison with nonsulfonated analogs. Sulfonic acid groups present in SuPBI compensate for acid groups involved in crosslinking, thereby increasing IEC and proton conductivity of the membrane. When water uptake and proton conductivity were compared to the IEC of blends containing either sulfonated or nonsulfonated PBI, no noticeable distinction between PBI types could be made. Comparisons were also made between these blends and pure SPEEK membranes of similar IEC. Blend membranes exhibit slightly lower maximum proton conductivity than pure SPEEK membranes (60 vs. 75 mS cm?1) but had significantly enhanced dimensional stability upon immersion in water, especially at elevated temperature (80 °C). Elevated temperature measurements in humid environments show increased proton conductivity of the SuPBI membranes when compared with SPEEK‐only membranes of similar IEC (c.f. 55 for the blend vs. 42 mS cm?1 for SPEEK at 80 °C, 90% relative humidity). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3640–3650, 2010  相似文献   

4.
A new class of hybrid nanocomposite membranes containing poly(vinyl alcohol) (PVA), phosphotungstic acid (PWA), 3-glycidyloxypropyltrimethoxysilane (GPTMS), 3-mercaptopropyltrimethoxysilane (MPTMS) and glutaraldehyde (GA) were prepared by a sol–gel method. The aim of this research study was to investigate these novel and highly proton-conducting membranes including their properties, and performances for proton exchange membrane fuel cells (PEMFCs) operating at low temperature. 'Swelling' was observed at room temperature for all the composites. The manner in which the conductivity depended on temperature and humidity was determined and a maximum conductivity value of 2.5?×?10?2 S cm?1 was found at a 140°C and 30 % relative humidity (RH) for the PVA/PWA/GPTMS/MPTMS/P2O5/GA (50/5/15/10/10/10 wt.%) hybrid composite membrane. It was suggested that the conductivity depended strongly on the nature of the organic/inorganic components as well as on the acid concentration. X-ray diffraction (XRD) results demonstrated that this membrane had an amorphous phase, and Fourier transform infrared spectroscopy (FTIR) results confirmed the composite formation. Finally, membrane-electrode assemblies with a loading of 0.1 mg cm?2 of Pt/C on a prepared electrode gave rise to a current density of 309 mA cm?2 at 0.5 V.  相似文献   

5.
Sulfonated poly(ether ether ketone) (SPEEK)–silica membranes doped with phosphotungstic acid (PWA) are presented. The silica is generated in situ via the water free sol–gel process of polyethoxysiloxane (PEOS), a liquid hyperbranched inorganic polymer of low viscosity. At 100 °C and 90% RH the membrane prepared with PEOS (silica content = 20 wt%) shows two times higher conductivity than the pure SPEEK. The addition of small amounts of PWA (2 wt% of the total solid content) introduced in the early stage of membrane preparation brings to a further increase in conductivity (more than three times the pure SPEEK). During membrane formation PWA and the sulfonic acid groups of SPEEK act as catalysts in the conversion of PEOS in silica. Once the membranes are formed, PWA is incorporated in the silica network and acts as proton conductivity enhancer. The correlation between morphology and proton conductivity allows establishing the optimal doping level and preparation procedure. The morphology is studied by transmission electron microscopy (TEM) while the proton conductivity is measured by impedance spectroscopy (IS). The direct methanol fuel cell performance is also investigated.  相似文献   

6.
A series of sulfonated poly(aryl ether ether ketone ketone)s statistical copolymers with high molecular weights were synthesized via an aromatic nucleophilic substitution polymerization. The sulfonation content (SC), defined as the number of sulfonic acid groups contained in an average repeat unit, could be controlled by the feed ratios of monomers. Flexible and strong membranes in sodium sulfonate form could be prepared by the solution casting method, and readily transformed to their proton forms by treating them in 2 N sulfuric acid. The polymers showed high Tgs, which increased with an increase in SC. Membranes prepared from the present sulfonated poly(ether ether ketone ketone) copolymers containing the hexafluoroisopropylidene moiety (SPEEKK‐6F) and copolymers containing the pendant 3,5‐ditrifluoromethylphenyl moiety (SPEEKK‐6FP) had lower water uptakes and lower swelling ratios in comparison with previously prepared copolymers containing 6F units. All of the polymers possessed proton conductivities higher than 1 × 10?2 S/cm at room temperature, and proton conductivity values of several polymers were comparable to that of Nafion at high relative humidity. Their thermal stability, oxidative stability, and mechanical properties were also evaluated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2299–2310, 2006  相似文献   

7.
A series of poly(phenylene oxide) (PPO) polymers bearing phosphonic acid groups on the methyl group and on the phenyl ring are synthesized as membrane materials for fuel cell applications. These phosphonic acid‐based PPO membranes exhibited high chemical resistance, dimensional stability, and good proton conductivity even under low humidity condition. Among the membranes, the one in which the phosphonic acid moiety is attached to the polymer main chain with ? CO(CH2)5? shows highest proton conductivity under overall conditions even though it has the lowest water uptake and IEC value. A well‐defined separation of the hydrophilic and hydrophobic phases suggests the phosphonic acid groups to form proton conduction channels via interchain hydrogen bonding. A high storage modulus of the membranes in various temperature ranges indicates that the membranes are suitable for use under a high temperature and low humidity conditions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

8.
Conductive hybrids were prepared in a water/ethanol solution via the sol–gel process from an inorganic sol containing carboxyl groups and water‐borne conductive polyaniline (cPANI). The inorganic sol was prepared by the hydrolysis and condensation of methyltriethoxysilane with the condensed product of maleic anhydride and aminopropyltriethoxysilane as a catalyst, for which the carboxyl counterion along the cPANI backbone acted as an electrostatic‐interaction moiety. The existence of this electrostatic interaction could improve the compatibility of the two components and contribute to the homogeneous dispersion of cPANI in the silica phase. The electrostatic‐interaction hybrids displayed a conductivity percolation threshold as low as 1.1 wt % polyaniline in an emeraldine base, showing 2 orders of magnitude higher electrical conductivity than that without electrostatic interactions. The electrostatic‐interaction hybrids also showed good water resistance; the electrical conductivity with a cPANI loading of 16 wt % underwent a slight change after 14 days of soaking in water. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1424–1431, 2007  相似文献   

9.
Sulfonated poly(ether sulfone)s containing binaphthyl units (BNSHs) were successfully prepared for fuel cell application. BNSHs, which have very simple structures, were easily synthesized by postsulfonation of poly(1,1′‐dinaphthyl ether phenyl sulfone)s and gave tough, flexible, and transparent membranes by solvent casting. The BNSH membranes showed low water uptake compared to a typical sulfonated poly(ether ether sulfone) (BPSH‐40) membrane with a similar ion exchange capacity (IEC) value and water insolubility, even with a high IEC values of 3.19 mequiv/g because of their rigid and bulky structures. The BNSH‐100 membrane (IEC = 3.19 mequiv/g) exhibited excellent proton conductivity, which was comparable to or even higher than that of Nafion 117, over a range of 30–95% relative humidity (RH). The excellent proton conductivity, especially under low RH conditions, suggests that the BNSH‐100 membrane has excellent proton paths because of its high IEC value, and water insolubility due to the high hydrophobicity of the binaphthyl structure. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5827–5834, 2009  相似文献   

10.
Nanocomposite membranes based on polyelectrolyte complex (PEC) of chitosan/phosphotungstic acid (PWA) and different types of montmorillonite (MMT) were prepared as alternative membranes to Nafion for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy (FTIR) revealed an electrostatically fixed PWA within the PEC membranes, which avoids a decrease in proton conductivity at practical condition. Various amounts of pristine as well as organically modified MMT (OMMT) (MMT: Cloisite Na, OMMT: Cloisite 15A, and Cloisite 30B) were introduced to the PEC membranes to decrease in methanol permeability and, thus, enhance efficiency and power density of the cells. X-ray diffraction patterns of the nanocomposite membranes proved that MMT (or OMMT) layers were exfoliated in the membranes at loading weights of lower than 3 wt.%. Moreover, the proton conductivity and the methanol permeability as well as the water uptake behavior of the manufactured nanocomposite membranes were studied. According to the selectivity parameter, ratio of proton conductivity to methanol permeability, the PEC/2 wt.% MMT 30B was identified as the optimum composition. The DMFC performance tests were carried out at 70 °C and 5 M methanol feed and the optimum membrane showed higher maximum power density as well as acceptable durability compared to Nafion 117. The obtained results indicated that owing to the relatively high selectivity and power density, the optimum nanocomposite membrane could be considered as a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   

11.
Phosphoric acid‐doped crosslinked proton‐conducting membranes with high anhydrous proton conductivity, and good chemical stability in phosphoric acid were synthesized and characterized. The synthetic procedure of the acid‐doped composite membranes mainly involves the in situ crosslinking of polymerizable monomer oils (styrene and acrylonitrile) and vinylimidazole, and followed by the sulfonation of pendant imidazole groups with butanesultone, and further doped with phosphoric acid. The resultant phosphoric acid‐doped composite electrolyte membranes are flexible and show high thermal stability and high‐proton conductivity up to the order of 10?2 S cm?1 at 160 °C under anhydrous conditions. The phosphoric acid uptake, swelling degree, and proton conductivity of the composite membranes increase with the vinylimidazole content. The resultant composite membranes also show good oxidative stability in Fenton's reagent (at 70 °C), and quite good chemical stability in phosphoric acid (at 160 °C). The properties of the prepared electrolyte membranes indicate their promising prospects in anhydrous proton‐exchange membrane applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013 , 51, 1311–1317  相似文献   

12.
A series of sulfonated copolyimides (co‐SPIs) bearing pendant sulfonic acid groups were synthesized from 1,4,5,8‐naphthalenetetracarboxylic dianhydride (NTDA), bis(3‐sulfopropoxy) benzidines (BSPBs), and common nonsulfonated diamines via statistical or sequenced polycondensation reactions. Membranes were prepared by casting their m‐cresol solutions. The co‐SPI membrane had a microphase‐separated structure composed of hydrophilic and hydrophobic domains, but the connecting behavior of hydrophilic domains was different from that of the homo‐SPIs. The co‐SPI membranes displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. With water uptake values of 39–94 wt %, they showed dimensional changes in membrane thickness of about 0.11–0.58, which were much lower than those of homo‐SPIs. The proton conductivity σ values of co‐SPI membranes with ion exchange capacity values ranging from 1.95–2.32 meq/g increased sigmoidally with increasing relative humidity. They displayed σ values of 0.05–0.16 S/cm at 50 °C in liquid water. Increasing temperature up to 120 °C resulted in further increase in proton conductivity. The co‐SPI membranes showed relatively good conductivity stability during the aging treatment in water at 100 °C for 300 h. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1545–1553, 2005  相似文献   

13.
A series of sulfonated poly(ether ether ketone)/monoethanolamine/adipic acid (SPEEK/MEA/AA) composite membranes are prepared and investigated to assess their possibility as proton exchange membranes in direct methanol fuel cells (DMFCs). A preliminary evaluation shows that introducing MEA and AA into SPEEK matrix decreases the thermal stability of membrane. However, the degradation temperatures are still above 260 °C, satisfying the requirement for fuel cell operation. Compared with the pure SPEEK membrane, the composite membranes exhibit not only lower water uptake and swelling ratios but also better mechanical property and oxidative stability. Noticeably, the methanol diffusion coefficient of the composite membranes decrease significantly from 3.15 × 10?6 to 0.76 × 10?6 cm2/s with increasing MEA and AA content, accompanied by only a small sacrifice in proton conductivity. Although both the methanol diffusion coefficient and the proton conductivity of composite membranes are lower than those of pure SPEEK and Nafion® 117 membranes, their selectivity (conductivity/methanol diffusion coefficient) are higher. In addition, the composite membranes show excellent stability in aqueous methanol solution. The good thermal and chemical stability, low swelling ratio, excellent mechanical property, low methanol diffusion coefficient, and high selectivity make the use of these composite membranes in DMFCs quite attractive. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2871–2879, 2007  相似文献   

14.
A systematic investigation of properties and nanostructure of sulfonated polyarylenethioethersulfone (SPTES) copolymer proton exchange membranes for fuel cell applications has been presented. SPTES copolymers are high temperature resistant (250 °C), and form tough films with excellent proton conductivity up to 170 ± 5 mS/cm (SPTES 70 @ 85 °C, 85%RH). Small angle X‐ray scattering of hydrated SPTES 70 revealed the presence of local water domains (diameter ~5 nm) within the copolymer. The high proton conductivity of the membranes is attributed to the formation of these ionic aggregates containing water molecules, which facilitate proton transfer. AFM studies of SPTES 70 as a function of humidity (25–65%RH) showed an increase in hydrophilic domains with increasing humidity at 22 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2813–2822, 2007  相似文献   

15.
磺化聚醚醚酮/磷钨酸复合膜的导电和甲醇渗透性能   总被引:3,自引:0,他引:3  
薛松  尹鸽平 《高分子学报》2006,(9):1083-1087
通过磺化反应制备了磺化聚醚醚酮,1H-NMR测试表明其磺化度分别为0.65和0.73.用共混的方法制备了磺化聚醚醚酮/磷钨酸复合质子交换膜.研究了磺化聚醚醚酮的磺化度和磷钨酸的含量对复合膜的吸水性能?电导率,甲醇渗透性能的影响.随着磺化度和磷钨酸含量的增加,电导率逐渐增大,最高达到1.36×10-2S/cm(20℃),高于相同测试条件下NafionR○117膜的电导率(1.0×10-2S/cm).对复合膜的横向和纵向电导率进行了测试和比较,两者相差接近一个数量级.磷钨酸的掺杂虽然没有降低复合膜的甲醇渗透系数,但是仍然都低于相同条件下测得的NafionR○117膜的甲醇渗透系数.  相似文献   

16.
A series of novel side‐chain sulfonated poly(arylene ether sulfone) (SPAES) multiblock and random copolymers were synthesized by condensation polymerization from a new disulfonated aryl sulfone monomer, 4,4′‐difluoro‐2,2′‐bis(3‐sulfobenzoyl)diphenyl sulfone disodium salt (DFBSPS). The chemical structures of DFBSPS and the SPAESs were characterized by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FTIR) spectra. The SPAES membranes prepared by solution cast method exhibited high tensile strength (50–71 MPa) and high radical oxidative stability. They could keep their morphology and maintain proton conductivities after hydrolysis test in 95 °C water for 1000 h. They also showed smaller swelling ratio in in‐plane direction than in through‐plane direction and such an anisotropic effect was more significant for the multiblock copolymers than for the random ones. The multiblock copolymer membranes exhibited higher proton conductivity than the random ones with similar ion exchange capacities (IECs). Preliminary hydrogen‐oxygen fuel cell tests were performed at 60 °C and 80% relative humidity (RH). The results showed that the single cell equipped with the multibiock copolymer membrane SB3 exhibited 0.12 W cm?2 higher maximum output power density than the one equipped with the random copolymer membrane SR3 (with the same IEC), indicating much better performance of the former. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2304–2313  相似文献   

17.
A series of polystyrenes with phosphonic acid ( 5 ) via long alkyl side chains (4, 6, and 8 methylene units) were prepared by the radical polymerization of the corresponding diethyl ω‐(4‐vinylphenoxy)alkylphosphonates, followed by the hydrolysis with trimethylsilyl bromide. The resulting phosphonated polystyrene membranes had a high oxidative stability against Fenton's reagent at room temperature. The membranes prepared from 5 exhibited a very low water uptake, similar to that of Nafion 117 over the wide range of 30 to 80% relative humidity (RH). The proton conductivities of these membranes are lower than that of Nafion 117 in the range of 30 to 90% RH, but comparable or higher than those of the reported phosphonated polymers with higher IEC values, such as the phosphonated poly(N‐phenylacrylamide) (PDPAA, IEC: 6.72 mequiv/g) and fluorinated polymers with pendant phosphonic acids (M47, IEC: 8.5 mequiv/g), at low RH conditions despite the much lower IEC values (3.0–3.8 mequiv/g) of these membranes. These results suggest that the flexible pendant side chains of 5 would contribute to the formation of hydrogen‐bonding networks by considering the very low water uptake of these polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
A new bisphenol monomer containing a pair of electron‐rich tetra‐arylmethane units was designed and synthesized. Based on this monomer, along with commercial 4,4′‐(hexafluoroisopropylidene)diphenol A and 4,4′‐difluorobenzophenone, a series of novel poly(arylene ether ketone)s containing octasulfonated segments of varying molar percentage (x) (6F‐SPAEK‐x) were successfully synthesized by polycondensation reactions, followed by sulfonation. Tough, flexible, and transparent membranes, exhibiting excellent thermal stabilities and mechanical properties were obtained by casting. 6F‐SPAEK‐x samples exhibited appropriate water uptake and swelling ratios at moderate ion exchange capacities (IECs) and excellent proton conductivities. The highest proton conductivity (215 mS cm−1) is observed for hydrated 6F‐SPAEK‐15 (IEC = 1.68 meq g−1) at 100 °C, which is more than 1.5 times that of Nafion 117. Furthermore, the 6F‐SPAEK‐10 membrane exhibited comparable proton conductivity (102 mS cm−1) to that of Nafion 117 at 80 °C, with a relatively low IEC value (1.26 meq g−1). Even under 30% relative humidity, the 6F‐SPAEK‐20 membrane (2.06 meq g−1) showed adequate conductivity (2.1 mS cm−1) compared with Nafion 117 (3.4 mS cm−1). The excellent comprehensive properties of these membranes are attributed to well‐defined nanophase‐separated structures promoted by strong polarity differences between highly ionized and fluorinated hydrophobic segments. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 25–37  相似文献   

19.
High-performance end-group cross-linked sulfonated poly(arylene ether sulfone) (SPAES) membranes are developed using thiolate-terminated SPAES with very high degree of sulfonation (DS) such as 90 mol% (SK-SPAES90) and vinyl functionalized graphene oxide (VGO) as a cross-linker and a filler through the thiol-Michael addition reaction. Since free-standing membranes for fuel cell application could not be prepared using the water soluble and highly proton conductive SPAES with high DS of 90 mol%, cross-linked SPAES90 membranes are intentionally prepared. The cross-linked membranes are found to have good physicochemical properties with excellent proton conductivity that can be applied for the proton exchange membrane. In particular, the cross-linked SPAES90 membrane prepared using 1.0 wt% of VGO exhibits better dimensional stability than a SPAES70 membrane from the linear SPAES with DS of 70 mol% and the proton conductivities of this membrane are larger than those of Nafion 211 at 80 °C under different relative humidity conditions (40%-95%).  相似文献   

20.
A series of novel phenolphthalein‐containing sulfonated poly(arylene ether phosphine oxide)s (sPAEPP) with various sulfonation degrees were synthesized by direct polycondensation. The structure of sPAEPP was confirmed by 1H‐NMR, 13C‐NMR, and IR spectroscopy. The high‐molecular weight of these polymers was determined by gel permeation chromatography (GPC). The transparent, tough, and flexible membranes could be achieved by solution casting. The macroscopic properties and microstructure of the obtained membranes were investigated in detail. The results showed that these sPAEPP membranes displayed excellent properties in terms of swelling, proton conductivity, and methanol permeability. For example, sPAEPP‐100 membrane exhibited an appropriate water uptake of 33.1%, a swelling ratio of only 11.7% (lower than 20.1% of Nafion 117), a proton conductivity of 0.11 S cm?1 (similar to that of Nafion 117) at 80 °C, and a methanol permeability of 4.82 × 10?7 cm2 s?1. Meanwhile, it also presented outstanding oxidative stability. Atomic force microscope (AFM) micrographs showed that the hydrophilic domains of the sPAEPP‐100 membrane formed connected and narrow ionic channels, which contributed to its high proton conductivity and good dimensional stability. As a result, sPAEPP‐100 membrane displays excellent application prospect for fuel cells. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1097–1104  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号